Spaces:
Running
on
T4
Running
on
T4
# -*- coding: utf-8 -*- | |
''' | |
From ESRGAN | |
''' | |
import os, sys | |
import cv2 | |
import numpy as np | |
import torch | |
from torch.nn import functional as F | |
from scipy import special | |
import random | |
import math | |
from torchvision.utils import make_grid | |
from degradation.ESR.degradations_functionality import * | |
root_path = os.path.abspath('.') | |
sys.path.append(root_path) | |
def np2tensor(np_frame): | |
return torch.from_numpy(np.transpose(np_frame, (2, 0, 1))).unsqueeze(0).cuda().float()/255 | |
def tensor2np(tensor): | |
# tensor should be batch size1 and cannot be grayscale input | |
return (np.transpose(tensor.detach().squeeze(0).cpu().numpy(), (1, 2, 0))) * 255 | |
def mass_tensor2np(tensor): | |
''' The input tensor is massive tensor | |
''' | |
return (np.transpose(tensor.detach().squeeze(0).cpu().numpy(), (0, 2, 3, 1))) * 255 | |
def save_img(tensor, save_name): | |
np_img = tensor2np(tensor)[:,:,16] | |
# np_img = np.expand_dims(np_img, axis=2) | |
cv2.imwrite(save_name, np_img) | |
def filter2D(img, kernel): | |
"""PyTorch version of cv2.filter2D | |
Args: | |
img (Tensor): (b, c, h, w) | |
kernel (Tensor): (b, k, k) | |
""" | |
k = kernel.size(-1) | |
b, c, h, w = img.size() | |
if k % 2 == 1: | |
img = F.pad(img, (k // 2, k // 2, k // 2, k // 2), mode='reflect') | |
else: | |
raise ValueError('Wrong kernel size') | |
ph, pw = img.size()[-2:] | |
if kernel.size(0) == 1: | |
# apply the same kernel to all batch images | |
img = img.view(b * c, 1, ph, pw) | |
kernel = kernel.view(1, 1, k, k) | |
return F.conv2d(img, kernel, padding=0).view(b, c, h, w) | |
else: | |
img = img.view(1, b * c, ph, pw) | |
kernel = kernel.view(b, 1, k, k).repeat(1, c, 1, 1).view(b * c, 1, k, k) | |
return F.conv2d(img, kernel, groups=b * c).view(b, c, h, w) | |
def generate_kernels(opt): | |
kernel_range = [2 * v + 1 for v in range(opt["kernel_range"][0], opt["kernel_range"][1])] | |
# ------------------------ Generate kernels (used in the first degradation) ------------------------ # | |
kernel_size = random.choice(kernel_range) | |
if np.random.uniform() < opt['sinc_prob']: | |
# 里面加一层sinc filter,但是10%的概率 | |
# this sinc filter setting is for kernels ranging from [7, 21] | |
if kernel_size < 13: | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
else: | |
omega_c = np.random.uniform(np.pi / 5, np.pi) | |
kernel = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
else: | |
kernel = random_mixed_kernels( | |
opt['kernel_list'], | |
opt['kernel_prob'], | |
kernel_size, | |
opt['blur_sigma'], | |
opt['blur_sigma'], [-math.pi, math.pi], | |
opt['betag_range'], | |
opt['betap_range'], | |
noise_range=None) | |
# pad kernel: -在v2我是直接省略了padding | |
pad_size = (21 - kernel_size) // 2 | |
kernel = np.pad(kernel, ((pad_size, pad_size), (pad_size, pad_size))) | |
# ------------------------ Generate kernels (used in the second degradation) ------------------------ # | |
kernel_size = random.choice(kernel_range) | |
if np.random.uniform() < opt['sinc_prob2']: | |
# 里面加一层sinc filter,但是10%的概率 | |
if kernel_size < 13: | |
omega_c = np.random.uniform(np.pi / 3, np.pi) | |
else: | |
omega_c = np.random.uniform(np.pi / 5, np.pi) | |
kernel2 = circular_lowpass_kernel(omega_c, kernel_size, pad_to=False) | |
else: | |
kernel2 = random_mixed_kernels( | |
opt['kernel_list2'], | |
opt['kernel_prob2'], | |
kernel_size, | |
opt['blur_sigma2'], | |
opt['blur_sigma2'], [-math.pi, math.pi], | |
opt['betag_range2'], | |
opt['betap_range2'], | |
noise_range=None) | |
# pad kernel | |
pad_size = (21 - kernel_size) // 2 | |
kernel2 = np.pad(kernel2, ((pad_size, pad_size), (pad_size, pad_size))) | |
kernel = torch.FloatTensor(kernel) | |
kernel2 = torch.FloatTensor(kernel2) | |
return (kernel, kernel2) | |