from math import prod import torch import torch.nn as nn from architecture.grl_common.ops import ( bchw_to_blc, blc_to_bchw, calculate_mask, window_partition, window_reverse, ) from timm.models.layers import DropPath, to_2tuple, trunc_normal_ class Mlp(nn.Module): """MLP as used in Vision Transformer, MLP-Mixer and related networks""" def __init__( self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.0, ): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features drop_probs = to_2tuple(drop) self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.drop1 = nn.Dropout(drop_probs[0]) self.fc2 = nn.Linear(hidden_features, out_features) self.drop2 = nn.Dropout(drop_probs[1]) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop1(x) x = self.fc2(x) x = self.drop2(x) return x class WindowAttentionV1(nn.Module): r"""Window based multi-head self attention (W-MSA) module with relative position bias. It supports both of shifted and non-shifted window. Args: dim (int): Number of input channels. window_size (tuple[int]): The height and width of the window. num_heads (int): Number of attention heads. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 proj_drop (float, optional): Dropout ratio of output. Default: 0.0 """ def __init__( self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0, use_pe=True, ): super().__init__() self.dim = dim self.window_size = window_size # Wh, Ww self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.use_pe = use_pe if self.use_pe: # define a parameter table of relative position bias ws = self.window_size table = torch.zeros((2 * ws[0] - 1) * (2 * ws[1] - 1), num_heads) self.relative_position_bias_table = nn.Parameter(table) # 2*Wh-1 * 2*Ww-1, nH trunc_normal_(self.relative_position_bias_table, std=0.02) self.get_relative_position_index(self.window_size) self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.softmax = nn.Softmax(dim=-1) def get_relative_position_index(self, window_size): # get pair-wise relative position index for each token inside the window coord_h = torch.arange(window_size[0]) coord_w = torch.arange(window_size[1]) coords = torch.stack(torch.meshgrid([coord_h, coord_w])) # 2, Wh, Ww coords = torch.flatten(coords, 1) # 2, Wh*Ww coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww coords = coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 coords[:, :, 1] += window_size[1] - 1 coords[:, :, 0] *= 2 * window_size[1] - 1 relative_position_index = coords.sum(-1) # Wh*Ww, Wh*Ww self.register_buffer("relative_position_index", relative_position_index) def forward(self, x, mask=None): """ Args: x: input features with shape of (num_windows*B, N, C) mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None """ B_, N, C = x.shape # qkv projection qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] # attention map q = q * self.scale attn = q @ k.transpose(-2, -1) # positional encoding if self.use_pe: win_dim = prod(self.window_size) bias = self.relative_position_bias_table[ self.relative_position_index.view(-1) ] bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww attn = attn + bias.unsqueeze(0) # shift attention mask if mask is not None: nW = mask.shape[0] mask = mask.unsqueeze(1).unsqueeze(0) attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask attn = attn.view(-1, self.num_heads, N, N) # attention attn = self.softmax(attn) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B_, N, C) # output projection x = self.proj(x) x = self.proj_drop(x) return x def extra_repr(self) -> str: return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}" def flops(self, N): # calculate flops for 1 window with token length of N flops = 0 # qkv = self.qkv(x) flops += N * self.dim * 3 * self.dim # attn = (q @ k.transpose(-2, -1)) flops += self.num_heads * N * (self.dim // self.num_heads) * N # x = (attn @ v) flops += self.num_heads * N * N * (self.dim // self.num_heads) # x = self.proj(x) flops += N * self.dim * self.dim return flops class WindowAttentionWrapperV1(WindowAttentionV1): def __init__(self, shift_size, input_resolution, **kwargs): super(WindowAttentionWrapperV1, self).__init__(**kwargs) self.shift_size = shift_size self.input_resolution = input_resolution if self.shift_size > 0: attn_mask = calculate_mask(input_resolution, self.window_size, shift_size) else: attn_mask = None self.register_buffer("attn_mask", attn_mask) def forward(self, x, x_size): H, W = x_size B, L, C = x.shape x = x.view(B, H, W, C) # cyclic shift if self.shift_size > 0: x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) # partition windows x = window_partition(x, self.window_size) # nW*B, wh, ww, C x = x.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C # W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size if self.input_resolution == x_size: attn_mask = self.attn_mask else: attn_mask = calculate_mask(x_size, self.window_size, self.shift_size) attn_mask = attn_mask.to(x.device) # attention x = super(WindowAttentionWrapperV1, self).forward(x, mask=attn_mask) # nW*B, wh*ww, C # merge windows x = x.view(-1, *self.window_size, C) x = window_reverse(x, self.window_size, x_size) # B, H, W, C # reverse cyclic shift if self.shift_size > 0: x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) x = x.view(B, H * W, C) return x class SwinTransformerBlockV1(nn.Module): r"""Swin Transformer Block. Args: dim (int): Number of input channels. input_resolution (tuple[int]): Input resulotion. num_heads (int): Number of attention heads. window_size (int): Window size. shift_size (int): Shift size for SW-MSA. mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. drop (float, optional): Dropout rate. Default: 0.0 attn_drop (float, optional): Attention dropout rate. Default: 0.0 drop_path (float, optional): Stochastic depth rate. Default: 0.0 act_layer (nn.Module, optional): Activation layer. Default: nn.GELU norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__( self, dim, input_resolution, num_heads, window_size=7, shift_size=0, mlp_ratio=4.0, qkv_bias=True, qk_scale=None, drop=0.0, attn_drop=0.0, drop_path=0.0, act_layer=nn.GELU, norm_layer=nn.LayerNorm, use_pe=True, res_scale=1.0, ): super().__init__() self.dim = dim self.input_resolution = input_resolution self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio if min(self.input_resolution) <= self.window_size: # if window size is larger than input resolution, we don't partition windows self.shift_size = 0 self.window_size = min(self.input_resolution) assert ( 0 <= self.shift_size < self.window_size ), "shift_size must in 0-window_size" self.res_scale = res_scale self.norm1 = norm_layer(dim) self.attn = WindowAttentionWrapperV1( shift_size=self.shift_size, input_resolution=self.input_resolution, dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, use_pe=use_pe, ) self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() self.norm2 = norm_layer(dim) self.mlp = Mlp( in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer, drop=drop, ) def forward(self, x, x_size): # Window attention x = x + self.res_scale * self.drop_path(self.attn(self.norm1(x), x_size)) # FFN x = x + self.res_scale * self.drop_path(self.mlp(self.norm2(x))) return x def extra_repr(self) -> str: return ( f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" ) def flops(self): flops = 0 H, W = self.input_resolution # norm1 flops += self.dim * H * W # W-MSA/SW-MSA nW = H * W / self.window_size / self.window_size flops += nW * self.attn.flops(self.window_size * self.window_size) # mlp flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio # norm2 flops += self.dim * H * W return flops class PatchMerging(nn.Module): r"""Patch Merging Layer. Args: input_resolution (tuple[int]): Resolution of input feature. dim (int): Number of input channels. norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm """ def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): super().__init__() self.input_resolution = input_resolution self.dim = dim self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) self.norm = norm_layer(4 * dim) def forward(self, x): """ x: B, H*W, C """ H, W = self.input_resolution B, L, C = x.shape assert L == H * W, "input feature has wrong size" assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." x = x.view(B, H, W, C) x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C x = self.norm(x) x = self.reduction(x) return x def extra_repr(self) -> str: return f"input_resolution={self.input_resolution}, dim={self.dim}" def flops(self): H, W = self.input_resolution flops = H * W * self.dim flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim return flops class PatchEmbed(nn.Module): r"""Image to Patch Embedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__( self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ img_size[0] // patch_size[0], img_size[1] // patch_size[1], ] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim if norm_layer is not None: self.norm = norm_layer(embed_dim) else: self.norm = None def forward(self, x): x = x.flatten(2).transpose(1, 2) # B Ph*Pw C if self.norm is not None: x = self.norm(x) return x def flops(self): flops = 0 H, W = self.img_size if self.norm is not None: flops += H * W * self.embed_dim return flops class PatchUnEmbed(nn.Module): r"""Image to Patch Unembedding Args: img_size (int): Image size. Default: 224. patch_size (int): Patch token size. Default: 4. in_chans (int): Number of input image channels. Default: 3. embed_dim (int): Number of linear projection output channels. Default: 96. norm_layer (nn.Module, optional): Normalization layer. Default: None """ def __init__( self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None ): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) patches_resolution = [ img_size[0] // patch_size[0], img_size[1] // patch_size[1], ] self.img_size = img_size self.patch_size = patch_size self.patches_resolution = patches_resolution self.num_patches = patches_resolution[0] * patches_resolution[1] self.in_chans = in_chans self.embed_dim = embed_dim def forward(self, x, x_size): B, HW, C = x.shape x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C return x def flops(self): flops = 0 return flops class Linear(nn.Linear): def __init__(self, in_features, out_features, bias=True): super(Linear, self).__init__(in_features, out_features, bias) def forward(self, x): B, C, H, W = x.shape x = bchw_to_blc(x) x = super(Linear, self).forward(x) x = blc_to_bchw(x, (H, W)) return x def build_last_conv(conv_type, dim): if conv_type == "1conv": block = nn.Conv2d(dim, dim, 3, 1, 1) elif conv_type == "3conv": # to save parameters and memory block = nn.Sequential( nn.Conv2d(dim, dim // 4, 3, 1, 1), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), nn.LeakyReLU(negative_slope=0.2, inplace=True), nn.Conv2d(dim // 4, dim, 3, 1, 1), ) elif conv_type == "1conv1x1": block = nn.Conv2d(dim, dim, 1, 1, 0) elif conv_type == "linear": block = Linear(dim, dim) return block # class BasicLayer(nn.Module): # """A basic Swin Transformer layer for one stage. # Args: # dim (int): Number of input channels. # input_resolution (tuple[int]): Input resolution. # depth (int): Number of blocks. # num_heads (int): Number of attention heads. # window_size (int): Local window size. # mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. # qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True # qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. # drop (float, optional): Dropout rate. Default: 0.0 # attn_drop (float, optional): Attention dropout rate. Default: 0.0 # drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 # norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm # downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None # args: Additional arguments # """ # def __init__( # self, # dim, # input_resolution, # depth, # num_heads, # window_size, # mlp_ratio=4.0, # qkv_bias=True, # qk_scale=None, # drop=0.0, # attn_drop=0.0, # drop_path=0.0, # norm_layer=nn.LayerNorm, # downsample=None, # args=None, # ): # super().__init__() # self.dim = dim # self.input_resolution = input_resolution # self.depth = depth # # build blocks # self.blocks = nn.ModuleList( # [ # _parse_block( # dim=dim, # input_resolution=input_resolution, # num_heads=num_heads, # window_size=window_size, # shift_size=0 # if args.no_shift # else (0 if (i % 2 == 0) else window_size // 2), # mlp_ratio=mlp_ratio, # qkv_bias=qkv_bias, # qk_scale=qk_scale, # drop=drop, # attn_drop=attn_drop, # drop_path=drop_path[i] # if isinstance(drop_path, list) # else drop_path, # norm_layer=norm_layer, # stripe_type="H" if (i % 2 == 0) else "W", # args=args, # ) # for i in range(depth) # ] # ) # # self.blocks = nn.ModuleList( # # [ # # STV1Block( # # dim=dim, # # input_resolution=input_resolution, # # num_heads=num_heads, # # window_size=window_size, # # shift_size=0 if (i % 2 == 0) else window_size // 2, # # mlp_ratio=mlp_ratio, # # qkv_bias=qkv_bias, # # qk_scale=qk_scale, # # drop=drop, # # attn_drop=attn_drop, # # drop_path=drop_path[i] # # if isinstance(drop_path, list) # # else drop_path, # # norm_layer=norm_layer, # # ) # # for i in range(depth) # # ] # # ) # # patch merging layer # if downsample is not None: # self.downsample = downsample( # input_resolution, dim=dim, norm_layer=norm_layer # ) # else: # self.downsample = None # def forward(self, x, x_size): # for blk in self.blocks: # x = blk(x, x_size) # if self.downsample is not None: # x = self.downsample(x) # return x # def extra_repr(self) -> str: # return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" # def flops(self): # flops = 0 # for blk in self.blocks: # flops += blk.flops() # if self.downsample is not None: # flops += self.downsample.flops() # return flops