import os, sys import cv2 import time import gradio as gr import torch import numpy as np from torchvision.utils import save_image # Import files from the local folder root_path = os.path.abspath('.') sys.path.append(root_path) from test_code.inference import super_resolve_img from test_code.test_utils import load_grl, load_rrdb def auto_download_if_needed(weight_path): if os.path.exists(weight_path): return if not os.path.exists("pretrained"): os.makedirs("pretrained") if weight_path == "pretrained/4x_APISR_GRL_GAN_generator.pth": os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/4x_APISR_GRL_GAN_generator.pth") os.system("mv 4x_APISR_GRL_GAN_generator.pth pretrained") if weight_path == "pretrained/2x_APISR_RRDB_GAN_generator.pth": os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/2x_APISR_RRDB_GAN_generator.pth") os.system("mv 2x_APISR_RRDB_GAN_generator.pth pretrained") def inference(img_path, model_name): try: weight_dtype = torch.float32 # Load the model if model_name == "4xGRL": weight_path = "pretrained/4x_APISR_GRL_GAN_generator.pth" auto_download_if_needed(weight_path) generator = load_grl(weight_path, scale=4) # Directly use default way now elif model_name == "2xRRDB": weight_path = "pretrained/2x_APISR_RRDB_GAN_generator.pth" auto_download_if_needed(weight_path) generator = load_rrdb(weight_path, scale=2) # Directly use default way now else: raise gr.Error("We don't support such Model") generator = generator.to(dtype=weight_dtype) # In default, we will automatically use crop to match 4x size super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, crop_for_4x=True) store_name = str(time.time()) + ".png" save_image(super_resolved_img, store_name) outputs = cv2.imread(store_name) outputs = cv2.cvtColor(outputs, cv2.COLOR_RGB2BGR) return outputs except Exception as error: raise gr.Error(f"global exception: {error}") if __name__ == '__main__': MARKDOWN = \ """ ##

APISR: Anime Production Inspired Real-World Anime Super-Resolution (CVPR 2024)

[GitHub](https://github.com/Kiteretsu77/APISR) | [Paper](https://arxiv.org/abs/2403.01598) APISR aims at restoring and enhancing low-quality low-resolution anime images and video sources with various degradations from real-world scenarios. If APISR is helpful, please help star the GitHub Repo. Thanks! """ block = gr.Blocks().queue(max_size=10) with block: with gr.Row(): gr.Markdown(MARKDOWN) with gr.Row(elem_classes=["container"]): with gr.Column(scale=2): input_image = gr.Image(type="filepath", label="Input") model_name = gr.Dropdown( [ "2xRRDB", "4xGRL" ], type="value", value="4xGRL", label="model", ) run_btn = gr.Button(value="Submit") with gr.Column(scale=3): output_image = gr.Image(type="numpy", label="Output image") with gr.Row(elem_classes=["container"]): gr.Examples( [ ["__assets__/lr_inputs/image-00277.png"], ["__assets__/lr_inputs/image-00542.png"], ["__assets__/lr_inputs/41.png"], ["__assets__/lr_inputs/f91.jpg"], ["__assets__/lr_inputs/image-00440.png"], ["__assets__/lr_inputs/image-00164.jpg"], ["__assets__/lr_inputs/img_eva.jpeg"], ], [input_image], ) run_btn.click(inference, inputs=[input_image, model_name], outputs=[output_image]) block.launch()