fluxInpaint / app.py
Himanshu806's picture
Update app.py
e297481 verified
import gradio as gr
import spaces
import numpy as np
import torch
import random
from diffusers import FluxInpaintPipeline
from PIL import Image
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Load pipeline with VAE enabled
pipe = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev"
# torch_dtype=torch.bfloat16
).to("cuda")
pipe.load_lora_weights("alvdansen/flux-koda")
pipe.enable_lora()
pipe.vae.enable_slicing() # Enable slicing for better memory efficiency
pipe.vae.enable_tiling() # Enable tiling for larger images
def calculate_optimal_dimensions(image: Image.Image):
original_width, original_height = image.size
MIN_ASPECT_RATIO = 9 / 16
MAX_ASPECT_RATIO = 16 / 9
FIXED_DIMENSION = 1024
original_aspect_ratio = original_width / original_height
if original_aspect_ratio > 1:
width = FIXED_DIMENSION
height = round(FIXED_DIMENSION / original_aspect_ratio)
else:
height = FIXED_DIMENSION
width = round(FIXED_DIMENSION * original_aspect_ratio)
width = (width // 8) * 8
height = (height // 8) * 8
calculated_aspect_ratio = width / height
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
width = (height * MAX_ASPECT_RATIO // 8) * 8
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
height = (width / MIN_ASPECT_RATIO // 8) * 8
width = max(width, 576) if width == FIXED_DIMENSION else width
height = max(height, 576) if height == FIXED_DIMENSION else height
return width, height
@spaces.GPU
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28):
image = edit_images["background"]
width, height = calculate_optimal_dimensions(image)
mask = edit_images["layers"][0]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Run the inpainting pipeline
output = pipe(
prompt=prompt,
image=image,
mask_image=mask,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=torch.Generator(device='cuda').manual_seed(seed),
)
output_image = output.images[0]
output_image_jpg = output_image.convert("RGB")
output_image_jpg.save("output.jpg", "JPEG")
return output_image_jpg, seed
css = """
#col-container {
margin: 0 auto;
max-width: 1000px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# FLUX.1 [dev]")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label="Upload and draw mask for inpainting",
type="pil",
sources=["upload", "webcam"],
image_mode="RGB",
layers=True,
brush=gr.Brush(colors=["#FFFFFF"]),
)
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=2,
placeholder="Enter your prompt",
)
run_button = gr.Button("Run")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=3.5
)
num_inference_steps = gr.Slider(
label="Number of inference steps", minimum=1, maximum=50, step=1, value=28
)
run_button.click(
fn=infer,
inputs=[edit_image, prompt, seed, randomize_seed, guidance_scale, num_inference_steps],
outputs=[result, seed],
)
demo.launch()