Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spaces | |
import numpy as np | |
import torch | |
import random | |
from diffusers import FluxInpaintPipeline | |
from PIL import Image | |
MAX_SEED = np.iinfo(np.int32).max | |
MAX_IMAGE_SIZE = 2048 | |
# Load pipeline with VAE enabled | |
pipe = FluxInpaintPipeline.from_pretrained( | |
"black-forest-labs/FLUX.1-Fill-dev" | |
# torch_dtype=torch.bfloat16 | |
).to("cuda") | |
pipe.load_lora_weights("alvdansen/flux-koda") | |
pipe.enable_lora() | |
pipe.vae.enable_slicing() # Enable slicing for better memory efficiency | |
pipe.vae.enable_tiling() # Enable tiling for larger images | |
def calculate_optimal_dimensions(image: Image.Image): | |
original_width, original_height = image.size | |
MIN_ASPECT_RATIO = 9 / 16 | |
MAX_ASPECT_RATIO = 16 / 9 | |
FIXED_DIMENSION = 1024 | |
original_aspect_ratio = original_width / original_height | |
if original_aspect_ratio > 1: | |
width = FIXED_DIMENSION | |
height = round(FIXED_DIMENSION / original_aspect_ratio) | |
else: | |
height = FIXED_DIMENSION | |
width = round(FIXED_DIMENSION * original_aspect_ratio) | |
width = (width // 8) * 8 | |
height = (height // 8) * 8 | |
calculated_aspect_ratio = width / height | |
if calculated_aspect_ratio > MAX_ASPECT_RATIO: | |
width = (height * MAX_ASPECT_RATIO // 8) * 8 | |
elif calculated_aspect_ratio < MIN_ASPECT_RATIO: | |
height = (width / MIN_ASPECT_RATIO // 8) * 8 | |
width = max(width, 576) if width == FIXED_DIMENSION else width | |
height = max(height, 576) if height == FIXED_DIMENSION else height | |
return width, height | |
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28): | |
image = edit_images["background"] | |
width, height = calculate_optimal_dimensions(image) | |
mask = edit_images["layers"][0] | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Run the inpainting pipeline | |
output = pipe( | |
prompt=prompt, | |
image=image, | |
mask_image=mask, | |
height=height, | |
width=width, | |
guidance_scale=guidance_scale, | |
num_inference_steps=num_inference_steps, | |
generator=torch.Generator(device='cuda').manual_seed(seed), | |
) | |
output_image = output.images[0] | |
output_image_jpg = output_image.convert("RGB") | |
output_image_jpg.save("output.jpg", "JPEG") | |
return output_image_jpg, seed | |
css = """ | |
#col-container { | |
margin: 0 auto; | |
max-width: 1000px; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
with gr.Column(elem_id="col-container"): | |
gr.Markdown("# FLUX.1 [dev]") | |
with gr.Row(): | |
with gr.Column(): | |
edit_image = gr.ImageEditor( | |
label="Upload and draw mask for inpainting", | |
type="pil", | |
sources=["upload", "webcam"], | |
image_mode="RGB", | |
layers=True, | |
brush=gr.Brush(colors=["#FFFFFF"]), | |
) | |
prompt = gr.Textbox( | |
label="Prompt", | |
show_label=False, | |
max_lines=2, | |
placeholder="Enter your prompt", | |
) | |
run_button = gr.Button("Run") | |
result = gr.Image(label="Result", show_label=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
seed = gr.Slider( | |
label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0 | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=3.5 | |
) | |
num_inference_steps = gr.Slider( | |
label="Number of inference steps", minimum=1, maximum=50, step=1, value=28 | |
) | |
run_button.click( | |
fn=infer, | |
inputs=[edit_image, prompt, seed, randomize_seed, guidance_scale, num_inference_steps], | |
outputs=[result, seed], | |
) | |
demo.launch() | |