import gradio as gr import numpy as np import spaces import torch import spaces import random from diffusers import FluxFillPipeline from PIL import Image MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 2048 pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda") pipe.load_lora_weights("alvdansen/flux-koda") pipe.enable_sequential_cpu_offload() pipe.enable_xformers_memory_efficient_attention() pipe.enable_fp16() def calculate_optimal_dimensions(image: Image.Image): # Extract the original dimensions original_width, original_height = image.size # Set constants MIN_ASPECT_RATIO = 9 / 16 MAX_ASPECT_RATIO = 16 / 9 FIXED_DIMENSION = 1024 # Calculate the aspect ratio of the original image original_aspect_ratio = original_width / original_height # Determine which dimension to fix if original_aspect_ratio > 1: # Wider than tall width = FIXED_DIMENSION height = round(FIXED_DIMENSION / original_aspect_ratio) else: # Taller than wide height = FIXED_DIMENSION width = round(FIXED_DIMENSION * original_aspect_ratio) # Ensure dimensions are multiples of 8 width = (width // 8) * 8 height = (height // 8) * 8 # Enforce aspect ratio limits calculated_aspect_ratio = width / height if calculated_aspect_ratio > MAX_ASPECT_RATIO: width = (height * MAX_ASPECT_RATIO // 8) * 8 elif calculated_aspect_ratio < MIN_ASPECT_RATIO: height = (width / MIN_ASPECT_RATIO // 8) * 8 # Ensure width and height remain above the minimum dimensions width = max(width, 576) if width == FIXED_DIMENSION else width height = max(height, 576) if height == FIXED_DIMENSION else height return width, height @spaces.GPU(durations=300) def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)): image = edit_images["background"] width, height = calculate_optimal_dimensions(image) mask = edit_images["layers"][0] if randomize_seed: seed = random.randint(0, MAX_SEED) image = pipe( prompt=prompt, image=image, mask_image=mask, height=height, width=width, guidance_scale=guidance_scale, num_inference_steps=num_inference_steps, generator=torch.Generator(device='cuda').manual_seed(seed), # lora_scale=0.75 // not supported in this version ).images[0] output_image_jpg = image.convert("RGB") output_image_jpg.save("output.jpg", "JPEG") return output_image_jpg, seed # return image, seed examples = [ "photography of a young woman, accent lighting, (front view:1.4), " # "a tiny astronaut hatching from an egg on the moon", # "a cat holding a sign that says hello world", # "an anime illustration of a wiener schnitzel", ] css=""" #col-container { margin: 0 auto; max-width: 1000px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 [dev] """) with gr.Row(): with gr.Column(): edit_image = gr.ImageEditor( label='Upload and draw mask for inpainting', type='pil', sources=["upload", "webcam"], image_mode='RGB', layers=False, brush=gr.Brush(colors=["#FFFFFF"]), # height=600 ) prompt = gr.Text( label="Prompt", show_label=False, max_lines=2, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, visible=False ) height = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024, visible=False ) with gr.Row(): guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=30, step=0.5, value=50, ) num_inference_steps = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], outputs = [result, seed] ) demo.launch()