import gradio | |
import nltk | |
import pandas as pd | |
from transformers import pipeline | |
summarizer = pipeline('summarization', model='t5-base') | |
# classifier_model_name = 'bhadresh-savani/distilbert-base-uncased-emotion' | |
# classifier_emotions = ['anger', 'disgust', 'fear', 'joy', 'sadness', 'surprise'] | |
classifier_model_name = 'ProsusAI/finbert' | |
classifier_emotions = ['positive', 'neutral', 'negative'] | |
classifier = pipeline('text-classification', model=classifier_model_name) | |
def my_inference_function(name): | |
return "Hello " + name + "!" | |
gr_interface = gradio.Interface( | |
fn = my_inference_function, | |
inputs = "text", | |
outputs = "text" | |
) | |
gr_interface.launch() | |