Himanshusingh commited on
Commit
b9a198e
1 Parent(s): e483bf1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -7
app.py CHANGED
@@ -9,16 +9,18 @@ tokenizer = BertTokenizer.from_pretrained('ProsusAI/finbert')
9
 
10
  model = BertForSequenceClassification.from_pretrained('ProsusAI/finbert')
11
 
12
- #summarizer = pipeline('summarization', model='t5-base')
13
 
 
14
  # classifier_model_name = 'bhadresh-savani/distilbert-base-uncased-emotion'
15
  # classifier_emotions = ['anger', 'disgust', 'fear', 'joy', 'sadness', 'surprise']
16
 
17
- def get_sentiment(tokens):
18
- outputs = model(**tokens)
19
- probabilities = torch.nn.functional.softmax(outputs[0], dim=-1 )
20
- return probabilities
21
-
 
22
 
23
 
24
  def chunk_text_to_window_size_and_predict_proba(input_ids, attention_mask, total_len):
@@ -36,7 +38,7 @@ def chunk_text_to_window_size_and_predict_proba(input_ids, attention_mask, total
36
  proba_list (List[torch.Tensor]): List of probability tensors for each chunk.
37
  """
38
  proba_list = []
39
-
40
  start = 0
41
  window_length = 510
42
 
@@ -64,6 +66,9 @@ def chunk_text_to_window_size_and_predict_proba(input_ids, attention_mask, total
64
  }
65
 
66
  outputs = model(**input_dict)
 
 
 
67
 
68
  probabilities = torch.nn.functional.softmax(outputs[0], dim = -1)
69
  proba_list.append(probabilities)
@@ -115,6 +120,7 @@ def my_inference_function(sec_text):
115
  """
116
  tokens = tokenizer.encode_plus(sec_text, add_special_tokens=False)
117
 
 
118
  input_ids = tokens['input_ids']
119
  total_len = len(input_ids)
120
  attention_mask = tokens['attention_mask']
 
9
 
10
  model = BertForSequenceClassification.from_pretrained('ProsusAI/finbert')
11
 
12
+ summarizer = pipeline('summarization', model='t5-base')
13
 
14
+ classifier_emotions = ['positive', 'neutral', 'negative']
15
  # classifier_model_name = 'bhadresh-savani/distilbert-base-uncased-emotion'
16
  # classifier_emotions = ['anger', 'disgust', 'fear', 'joy', 'sadness', 'surprise']
17
 
18
+ def summarize_sentences(sentences_by_emotion, min_length, max_length):
19
+ for k in sentences_by_emotion.keys():
20
+ if (len(sentences_by_emotion[k])!=0):
21
+ text = ' '.join(sentences_by_emotion[k])
22
+ summary = summarizer(text, min_length=min_length, max_length=max_length)
23
+ print(f"{k.upper()}: {summary[0]['summary_text']}\n")
24
 
25
 
26
  def chunk_text_to_window_size_and_predict_proba(input_ids, attention_mask, total_len):
 
38
  proba_list (List[torch.Tensor]): List of probability tensors for each chunk.
39
  """
40
  proba_list = []
41
+
42
  start = 0
43
  window_length = 510
44
 
 
66
  }
67
 
68
  outputs = model(**input_dict)
69
+
70
+ decoded = tokenizer.decode(input_ids_chunk)
71
+ print("########:", decoded , ":##############")
72
 
73
  probabilities = torch.nn.functional.softmax(outputs[0], dim = -1)
74
  proba_list.append(probabilities)
 
120
  """
121
  tokens = tokenizer.encode_plus(sec_text, add_special_tokens=False)
122
 
123
+
124
  input_ids = tokens['input_ids']
125
  total_len = len(input_ids)
126
  attention_mask = tokens['attention_mask']