File size: 7,668 Bytes
410390c
227ec7b
0e63678
410390c
 
0e63678
00a3421
227ec7b
0e63678
00a3421
0e63678
 
410390c
 
 
 
0e63678
 
410390c
 
 
 
 
 
 
 
 
 
0e63678
 
 
 
 
 
 
 
 
 
410390c
 
 
 
 
 
 
 
 
 
 
 
 
 
0e63678
410390c
 
 
0e63678
410390c
0e63678
410390c
0e63678
 
 
 
 
 
d44fda2
227ec7b
d44fda2
0a0a222
 
 
d44fda2
299d616
 
00a3421
 
299d616
 
 
 
d44fda2
0e63678
 
 
 
 
 
 
 
 
d44fda2
410390c
0a0a222
 
d44fda2
0a0a222
 
 
 
 
 
410390c
227ec7b
d44fda2
0a0a222
57437b7
0a0a222
0e63678
57437b7
0a0a222
d44fda2
 
0e63678
d44fda2
00a3421
 
0e63678
26237b6
0e63678
227ec7b
0a0a222
 
227ec7b
 
 
00a3421
0e63678
00a3421
26237b6
d44fda2
0a0a222
 
227ec7b
d44fda2
0e63678
227ec7b
0a0a222
 
 
 
 
 
 
 
 
 
 
c32fab0
 
 
 
 
 
 
410390c
0e63678
410390c
0e63678
 
 
 
c32fab0
 
 
410390c
0e63678
 
410390c
0e63678
d44fda2
410390c
0e63678
410390c
0e63678
 
 
 
 
 
227ec7b
0e63678
 
410390c
 
0e63678
57437b7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import json
import logging
import boto3
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import hf_hub_download
from tqdm import tqdm

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")

s3_client = boto3.client(
    's3',
    aws_access_key_id=AWS_ACCESS_KEY_ID,
    aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
    region_name=AWS_REGION
)

app = FastAPI()

PIPELINE_MAP = {
    "text-generation": "text-generation",
    "sentiment-analysis": "sentiment-analysis",
    "translation": "translation",
    "fill-mask": "fill-mask",
    "question-answering": "question-answering",
    "text-to-speech": "text-to-speech",
    "text-to-video": "text-to-video",
    "text-to-image": "text-to-image"
}

class S3DirectStream:
    def __init__(self, bucket_name):
        self.s3_client = boto3.client(
            's3',
            aws_access_key_id=AWS_ACCESS_KEY_ID,
            aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
            region_name=AWS_REGION
        )
        self.bucket_name = bucket_name

    def stream_from_s3(self, key):
        try:
            response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
            return response['Body']
        except self.s3_client.exceptions.NoSuchKey:
            raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")

    def get_model_file_parts(self, model_name):
        try:
            model_prefix = model_name.lower()
            files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix)
            model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']]
            return model_files
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")

    def load_model_from_s3(self, model_name):
        try:
            profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)

            model_prefix = f"{profile}/{model}".lower()
            model_files = self.get_model_file_parts(model_prefix)

            if not model_files:
                self.download_and_upload_from_huggingface(model_name)
                model_files = self.get_model_file_parts(model_prefix)

            if not model_files:
                raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")

            config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
            config_data = config_stream.read()

            if not config_data:
                raise HTTPException(status_code=500, detail=f"El archivo de configuración {model_prefix}/config.json está vacío.")
            
            config_text = config_data.decode("utf-8")
            config_json = json.loads(config_text)

            model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False)
            return model

        except HTTPException as e:
            raise e
        except Exception as e:
            try:
                logger.error(f"Error al cargar el modelo desde S3, intentando desde Hugging Face: {e}")
                model = AutoModelForCausalLM.from_pretrained(model_name)
                return model
            except Exception as hf_error:
                raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde Hugging Face: {hf_error}")

    def load_tokenizer_from_s3(self, model_name):
        try:
            profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)

            tokenizer_stream = self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
            tokenizer_data = tokenizer_stream.read().decode("utf-8")

            tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{profile}/{model}")
            return tokenizer
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")

    def download_and_upload_from_huggingface(self, model_name):
        try:
            files_to_download = hf_hub_download(repo_id=model_name, use_auth_token=HUGGINGFACE_TOKEN, local_dir=model_name)

            for file in tqdm(files_to_download, desc="Subiendo archivos a S3"):
                file_name = os.path.basename(file)
                profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
                s3_key = f"{profile}/{model}/{file_name}"
                if not self.file_exists_in_s3(s3_key):
                    self.upload_file_to_s3(file, s3_key)

        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al descargar y subir modelo desde Hugging Face: {e}")

    def upload_file_to_s3(self, file_path, s3_key):
        try:
            self.create_s3_folders(s3_key)
            s3_client.put_object(Bucket=self.bucket_name, Key=s3_key, Body=open(file_path, 'rb'))
            os.remove(file_path)
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al subir archivo a S3: {e}")

    def create_s3_folders(self, s3_key):
        try:
            folder_keys = s3_key.split('/')
            for i in range(1, len(folder_keys)):
                folder_key = '/'.join(folder_keys[:i]) + '/'
                if not self.file_exists_in_s3(folder_key):
                    self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')

        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")

    def file_exists_in_s3(self, s3_key):
        try:
            self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
            return True
        except self.s3_client.exceptions.ClientError:
            return False

@app.post("/predict/")
async def predict(model_request: dict):
    try:
        model_name = model_request.get("model_name")
        task = model_request.get("pipeline_task")
        input_text = model_request.get("input_text")

        if not model_name or not task or not input_text:
            raise HTTPException(status_code=400, detail="Faltan parámetros en la solicitud.")

        streamer = S3DirectStream(S3_BUCKET_NAME)
        model = streamer.load_model_from_s3(model_name)
        tokenizer = streamer.load_tokenizer_from_s3(model_name)

        if task not in PIPELINE_MAP:
            raise HTTPException(status_code=400, detail="Pipeline task no soportado")

        nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)

        result = nlp_pipeline(input_text)

        if isinstance(result, dict) and 'file' in result:
            return JSONResponse(content={"file": result['file']})
        else:
            return JSONResponse(content={"result": result})

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Error al realizar la predicción: {e}")

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)