aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
2f5a890 verified
raw
history blame
7.56 kB
import os
import json
import logging
import boto3
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import hf_hub_download
from tqdm import tqdm
import io
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
PIPELINE_MAP = {
"text-generation": "text-generation",
"sentiment-analysis": "sentiment-analysis",
"translation": "translation",
"fill-mask": "fill-mask",
"question-answering": "question-answering",
"text-to-speech": "text-to-speech",
"text-to-video": "text-to-video",
"text-to-image": "text-to-image"
}
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
def stream_from_s3(self, key):
try:
logger.info(f"Descargando {key} desde S3...")
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
logger.error(f"El archivo {key} no existe en el bucket S3.")
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
except Exception as e:
logger.error(f"Error al descargar {key} desde S3: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
def get_model_file_parts(self, model_name):
try:
model_prefix = model_name.lower()
logger.info(f"Obteniendo archivos para el modelo {model_name} desde S3...")
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix)
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']]
return model_files
except Exception as e:
logger.error(f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
def load_model_from_s3(self, model_name):
try:
model_prefix = model_name.lower()
model_files = self.get_model_file_parts(model_prefix)
if not model_files:
logger.info(f"El modelo {model_name} no est谩 en S3, descargando desde Hugging Face...")
self.download_and_upload_from_huggingface(model_name)
model_files = self.get_model_file_parts(model_prefix)
if not model_files:
logger.error(f"Archivos del modelo {model_name} no encontrados en S3.")
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")
logger.info(f"Cargando archivos del modelo {model_name}...")
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
config_data = config_stream.read()
if not config_data:
logger.error(f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o.")
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o.")
config_text = config_data.decode("utf-8")
config_json = json.loads(config_text)
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False)
return model
except Exception as e:
logger.error(f"Error al cargar el modelo desde S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")
def load_tokenizer_from_s3(self, model_name):
try:
logger.info(f"Cargando el tokenizer del modelo {model_name} desde S3...")
tokenizer_stream = self.stream_from_s3(f"{model_name}/tokenizer.json")
tokenizer_data = tokenizer_stream.read().decode("utf-8")
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
return tokenizer
except Exception as e:
logger.error(f"Error al cargar el tokenizer desde S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
def download_and_upload_from_huggingface(self, model_name):
try:
logger.info(f"Descargando modelo {model_name} desde Hugging Face...")
files_to_download = hf_hub_download(repo_id=model_name, use_auth_token=HUGGINGFACE_TOKEN, local_dir=model_name)
for file in tqdm(files_to_download, desc="Subiendo archivos a S3"):
file_name = os.path.basename(file)
s3_key = f"{model_name}/{file_name}"
if not self.file_exists_in_s3(s3_key):
self.upload_file_to_s3(file, s3_key)
except Exception as e:
logger.error(f"Error al descargar y subir modelo desde Hugging Face: {e}")
raise HTTPException(status_code=500, detail=f"Error al descargar y subir modelo desde Hugging Face: {e}")
def upload_file_to_s3(self, file_path, s3_key):
try:
with open(file_path, 'rb') as data:
self.s3_client.put_object(Bucket=self.bucket_name, Key=s3_key, Body=data)
os.remove(file_path)
logger.info(f"Archivo {file_path} subido correctamente a S3 y eliminado localmente.")
except Exception as e:
logger.error(f"Error al subir archivo a S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al subir archivo a S3: {e}")
@app.post("/predict/")
async def predict(model_request: dict):
try:
model_name = model_request.get("model_name")
task = model_request.get("pipeline_task")
input_text = model_request.get("input_text")
streamer = S3DirectStream(S3_BUCKET_NAME)
model = streamer.load_model_from_s3(model_name)
tokenizer = streamer.load_tokenizer_from_s3(model_name)
if task not in PIPELINE_MAP:
logger.error("Pipeline task no soportado")
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)
result = nlp_pipeline(input_text)
if isinstance(result, dict) and 'file' in result:
return JSONResponse(content={"file": result['file']})
else:
return JSONResponse(content={"result": result})
except Exception as e:
logger.error(f"Error al realizar la predicci贸n: {e}")
raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)