Spaces:
Sleeping
Sleeping
import os | |
import torch | |
from fastapi import FastAPI, HTTPException, UploadFile, File, Form, Depends, BackgroundTasks, Request, Query, APIRouter, Path, Body, status, Response, Header | |
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse, HTMLResponse, PlainTextResponse, RedirectResponse | |
from pydantic import BaseModel, validator, Field, root_validator, EmailStr, constr, ValidationError | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
GenerationConfig, | |
StoppingCriteriaList, | |
pipeline, | |
AutoProcessor, | |
AutoModelForImageClassification, | |
AutoModelForSeq2SeqLM, | |
AutoModelForQuestionAnswering, | |
AutoModelForSpeechSeq2Seq, | |
AutoModelForImageSegmentation, | |
AutoFeatureExtractor, | |
AutoModelForTokenClassification, | |
AutoModelForMaskedLM, | |
AutoModelForObjectDetection, | |
AutoModelForSeq2SeqLM | |
) | |
from io import BytesIO | |
import boto3 | |
from botocore.exceptions import NoCredentialsError, ClientError | |
from huggingface_hub import snapshot_download | |
import asyncio | |
import tempfile | |
import hashlib | |
from PIL import Image | |
import base64 | |
from typing import Optional, List, Union, Dict, Any | |
import uuid | |
import subprocess | |
import json | |
from starlette.middleware.cors import CORSMiddleware | |
import numpy as np | |
from typing import Dict, Any | |
from fastapi.staticfiles import StaticFiles | |
from fastapi.templating import Jinja2Templates | |
from fastapi.middleware.gzip import GZipMiddleware | |
from transformers import AutoImageProcessor, pipeline | |
from fastapi.security import APIKeyHeader, OAuth2PasswordBearer, OAuth2PasswordRequestForm | |
from fastapi.security.api_key import APIKeyCookie | |
from fastapi import Depends, Security, status, APIRouter, UploadFile, File, Request | |
from fastapi.security import APIKeyHeader, OAuth2PasswordRequestForm | |
from passlib.context import CryptContext | |
from jose import JWTError, jwt | |
from datetime import datetime, timedelta | |
from starlette.requests import Request | |
import logging | |
from pydantic import EmailStr, constr, ValidationError | |
from database import insert_user, get_user, delete_user, update_user, create_db_and_table | |
from starlette.middleware import Middleware | |
from starlette.middleware.base import BaseHTTPMiddleware, RequestResponseEndpoint | |
from starlette.types import ASGIApp | |
import uvicorn | |
from starlette.responses import StreamingResponse | |
import logging | |
from pydantic import EmailStr, constr, ValidationError | |
from database import insert_user, get_user, delete_user, update_user, create_db_and_table, get_all_users | |
from starlette.middleware import Middleware | |
from starlette.middleware.base import BaseHTTPMiddleware, RequestResponseEndpoint | |
from starlette.types import ASGIApp | |
import uvicorn | |
from starlette.responses import StreamingResponse | |
import logging | |
from fastapi.exceptions import RequestValidationError | |
from fastapi import Request, status, Depends | |
from fastapi.security import OAuth2PasswordRequestForm, OAuth2PasswordBearer | |
from jose import JWTError, jwt | |
from passlib.context import CryptContext | |
from datetime import datetime, timedelta | |
from pydantic import BaseModel, field_validator, model_validator, Field, EmailStr, constr, ValidationError | |
from typing import Optional, List, Union | |
#setting up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s - %(lineno)d - %(message)s') | |
logger = logging.getLogger(__name__) | |
#JWT Settings | |
SECRET_KEY = os.getenv("SECRET_KEY") | |
if not SECRET_KEY: | |
raise ValueError("SECRET_KEY must be set.") | |
ALGORITHM = "HS256" | |
ACCESS_TOKEN_EXPIRE_MINUTES = 30 | |
#Password Hashing | |
pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") | |
#Database connection - replace with your database setup | |
#Example using SQLite | |
import sqlite3 | |
conn = sqlite3.connect('users.db') | |
cursor = conn.cursor() | |
#OAuth2 | |
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token") | |
#API Key | |
API_KEY = os.getenv("API_KEY") | |
api_key_header = APIKeyHeader(name="X-API-Key") | |
#Configuration | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
TEMP_DIR = "/tmp" | |
STATIC_DIR = "static" | |
TEMPLATES = Jinja2Templates(directory="templates") | |
app = FastAPI() | |
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") | |
app.add_middleware(GZipMiddleware) | |
origins = ["*"] | |
app.add_middleware( | |
CORSMiddleware, | |
allow_origins=origins, | |
allow_credentials=True, | |
allow_methods=["*"], | |
allow_headers=["*"], | |
) | |
class User(BaseModel): | |
username: constr(min_length=3, max_length=50) | |
email: EmailStr | |
password: constr(min_length=8) | |
class GenerateRequest(BaseModel): | |
model_name: str | |
input_text: Optional[str] = Field(None, description="Input text for generation.") | |
task_type: str = Field(..., description="Type of generation task (text, image, audio, video, classification, translation, question-answering, speech-to-text, text-to-speech, image-segmentation, feature-extraction, token-classification, fill-mask, image-inpainting, image-super-resolution, object-detection, image-captioning, audio-transcription, summarization).") | |
temperature: float = 1.0 | |
max_new_tokens: int = 200 | |
stream: bool = True | |
top_p: float = 1.0 | |
top_k: int = 50 | |
repetition_penalty: float = 1.0 | |
num_return_sequences: int = 1 | |
do_sample: bool = True | |
chunk_delay: float = 0.0 | |
stop_sequences: List[str] = [] | |
image_file: Optional[UploadFile] = None | |
source_language: Optional[str] = None | |
target_language: Optional[str] = None | |
context: Optional[str] = None | |
audio_file: Optional[UploadFile] = None | |
raw_input: Optional[Union[str, bytes]] = None # for feature extraction | |
masked_text: Optional[str] = None # for fill-mask | |
mask_image: Optional[UploadFile] = None # for image inpainting | |
low_res_image: Optional[UploadFile] = None # for image super-resolution | |
def validate_task_type(cls, value): | |
allowed_types = ["text", "image", "audio", "video", "classification", "translation", "question-answering", "speech-to-text", "text-to-speech", "image-segmentation", "feature-extraction", "token-classification", "fill-mask", "image-inpainting", "image-super-resolution", "object-detection", "image-captioning", "audio-transcription", "summarization"] | |
if value not in allowed_types: | |
raise ValueError(f"Invalid task_type. Allowed types are: {allowed_types}") | |
return value | |
def check_input(cls, values): | |
task_type = values.get("task_type") | |
if task_type == "text" and values.get("input_text") is None: | |
raise ValueError("input_text is required for text generation.") | |
elif task_type == "speech-to-text" and values.get("audio_file") is None: | |
raise ValueError("audio_file is required for speech-to-text.") | |
elif task_type == "classification" and values.get("image_file") is None: | |
raise ValueError("image_file is required for image classification.") | |
elif task_type == "image-segmentation" and values.get("image_file") is None: | |
raise ValueError("image_file is required for image segmentation.") | |
elif task_type == "feature-extraction" and values.get("raw_input") is None: | |
raise ValueError("raw_input is required for feature extraction.") | |
elif task_type == "fill-mask" and values.get("masked_text") is None: | |
raise ValueError("masked_text is required for fill-mask.") | |
elif task_type == "image-inpainting" and (values.get("image_file") is None or values.get("mask_image") is None): | |
raise ValueError("image_file and mask_image are required for image inpainting.") | |
elif task_type == "image-super-resolution" and values.get("low_res_image") is None: | |
raise ValueError("low_res_image is required for image super-resolution.") | |
return values | |
class S3ModelLoader: | |
def __init__(self, bucket_name, aws_access_key_id, aws_secret_access_key, aws_region): | |
self.bucket_name = bucket_name | |
self.s3 = boto3.client( | |
's3', | |
aws_access_key_id=aws_access_key_id, | |
aws_secret_access_key=aws_secret_access_key, | |
region_name=aws_region | |
) | |
def _get_s3_uri(self, model_name): | |
return f"{self.bucket_name}/{model_name.replace('/', '-')}" | |
def load_model_and_tokenizer(self, model_name, task_type): | |
s3_uri = self._get_s3_uri(model_name) | |
try: | |
self.s3.head_object(Bucket=self.bucket_name, Key=f'{s3_uri}/config.json') | |
except ClientError as e: | |
if e.response['Error']['Code'] == '404': | |
with tempfile.TemporaryDirectory() as tmpdir: | |
model_path = snapshot_download(model_name, token=HUGGINGFACE_HUB_TOKEN, cache_dir=tmpdir) | |
self._upload_model_to_s3(model_path, s3_uri) | |
else: | |
raise HTTPException(status_code=500, detail=f"Error accessing S3: {e}") | |
return self._load_from_s3(s3_uri, task_type) | |
def _upload_model_to_s3(self, model_path, s3_uri): | |
for root, _, files in os.walk(model_path): | |
for file in files: | |
local_path = os.path.join(root, file) | |
s3_path = os.path.join(s3_uri, os.path.relpath(local_path, model_path)) | |
self.s3.upload_file(local_path, self.bucket_name, s3_path) | |
def _load_from_s3(self, s3_uri, task_type): | |
with tempfile.TemporaryDirectory() as tmpdir: | |
model_path = os.path.join(tmpdir, s3_uri) | |
os.makedirs(model_path, exist_ok=True) | |
self.s3.download_file(self.bucket_name, f"{s3_uri}/config.json", os.path.join(model_path, "config.json")) | |
if task_type == "text": | |
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_8bit=True) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
if tokenizer.eos_token_id is None: | |
tokenizer.eos_token_id = tokenizer.pad_token_id | |
return {"model": model, "tokenizer": tokenizer, "pad_token_id": tokenizer.pad_token_id, "eos_token_id": tokenizer.eos_token_id} | |
elif task_type in ["image", "audio", "video"]: | |
processor = AutoProcessor.from_pretrained(model_path) | |
pipeline_function = pipeline(task_type, model=model_path, device=0 if torch.cuda.is_available() else -1, processor=processor) | |
return {"pipeline": pipeline_function} | |
elif task_type == "classification": | |
model = AutoModelForImageClassification.from_pretrained(model_path) | |
processor = AutoProcessor.from_pretrained(model_path) | |
return {"model": model, "processor": processor} | |
elif task_type == "translation": | |
model = AutoModelForSeq2SeqLM.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
return {"model": model, "tokenizer": tokenizer} | |
elif task_type == "question-answering": | |
model = AutoModelForQuestionAnswering.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
return {"model": model, "tokenizer": tokenizer} | |
elif task_type == "speech-to-text": | |
model = pipeline("automatic-speech-recognition", model=model_path, device=0 if torch.cuda.is_available() else -1) | |
return {"pipeline": model} | |
elif task_type == "text-to-speech": | |
model = pipeline("text-to-speech", model=model_path, device=0 if torch.cuda.is_available() else -1) | |
return {"pipeline": model} | |
elif task_type == "image-segmentation": | |
model = pipeline("image-segmentation", model=model_path, device=0 if torch.cuda.is_available() else -1) | |
return {"pipeline": model} | |
elif task_type == "feature-extraction": | |
feature_extractor = AutoFeatureExtractor.from_pretrained(model_path) | |
return {"feature_extractor": feature_extractor} | |
elif task_type == "token-classification": | |
model = AutoModelForTokenClassification.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
return {"model": model, "tokenizer": tokenizer} | |
elif task_type == "fill-mask": | |
model = AutoModelForMaskedLM.from_pretrained(model_path) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
return {"model": model, "tokenizer": tokenizer} | |
elif task_type == "image-inpainting": | |
model = pipeline("image-inpainting", model=model_path, device=0 if torch.cuda.is_available() else -1) | |
return {"pipeline": model} | |
elif task_type == "image-super-resolution": | |
model = pipeline("image-super-resolution", model=model_path, device=0 if torch.cuda.is_available() else -1) | |
return {"pipeline": model} | |
elif task_type == "object-detection": | |
model = pipeline("object-detection", model=model_path, device=0 if torch.cuda.is_available() else -1) | |
image_processor = AutoImageProcessor.from_pretrained(model_path) | |
return {"pipeline": model, "image_processor": image_processor} | |
elif task_type == "image-captioning": | |
model = pipeline("image-captioning", model=model_path, device=0 if torch.cuda.is_available() else -1) | |
return {"pipeline": model} | |
elif task_type == "audio-transcription": | |
model = pipeline("automatic-speech-recognition", model=model_path, device=0 if torch.cuda.is_available() else -1) | |
return {"pipeline": model} | |
elif task_type == "summarization": | |
model = pipeline("summarization", model=model_path, device=0 if torch.cuda.is_available() else -1) | |
tokenizer = AutoTokenizer.from_pretrained(model_path) | |
return {"model": model, "tokenizer": tokenizer} | |
else: | |
raise ValueError("Unsupported task type") | |
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay): | |
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True).to(device) | |
input_length = encoded_input["input_ids"].shape[1] | |
max_length = model.config.max_length | |
remaining_tokens = max_length - input_length | |
if remaining_tokens <= 0: | |
yield "" | |
generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens) | |
def stop_criteria(input_ids, scores): | |
decoded_output = tokenizer.decode(input_ids[0][-1], skip_special_tokens=True) | |
return decoded_output in stop_sequences | |
stopping_criteria = StoppingCriteriaList([stop_criteria]) | |
outputs = model.generate( | |
**encoded_input, | |
do_sample=generation_config.do_sample, | |
max_new_tokens=generation_config.max_new_tokens, | |
temperature=generation_config.temperature, | |
top_p=generation_config.top_p, | |
top_k=generation_config.top_k, | |
repetition_penalty=generation_config.repetition_penalty, | |
num_return_sequences=generation_config.num_return_sequences, | |
stopping_criteria=stopping_criteria, | |
output_scores=True, | |
return_dict_in_generate=True | |
) | |
for output in outputs.sequences: | |
for token_id in output: | |
token = tokenizer.decode(token_id, skip_special_tokens=True) | |
yield token | |
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION) | |
def get_model_data(request: GenerateRequest): | |
return model_loader.load_model_and_tokenizer(request.model_name, request.task_type) | |
async def verify_api_key(api_key: str = Depends(api_key_header)): | |
if api_key != API_KEY: | |
raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API Key") | |
async def generate(request: GenerateRequest, background_tasks: BackgroundTasks, model_data = Depends(get_model_data)): | |
try: | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
if request.task_type == "text": | |
model = model_data["model"].to(device) | |
tokenizer = model_data["tokenizer"] | |
generation_config = GenerationConfig( | |
temperature=request.temperature, | |
max_new_tokens=request.max_new_tokens, | |
top_p=request.top_p, | |
top_k=request.top_k, | |
repetition_penalty=request.repetition_penalty, | |
do_sample=request.do_sample, | |
num_return_sequences=request.num_return_sequences, | |
) | |
async def stream_with_tokens(): | |
async for token in stream_text(model, tokenizer, request.input_text, generation_config, request.stop_sequences, device, request.chunk_delay): | |
yield f"Token: {token}\n" | |
return StreamingResponse(stream_with_tokens(), media_type="text/plain") | |
elif request.task_type in ["image", "audio", "video"]: | |
pipeline = model_data["pipeline"] | |
result = pipeline(request.input_text) | |
if request.task_type == "image": | |
image = result[0] | |
img_byte_arr = BytesIO() | |
image.save(img_byte_arr, format="PNG") | |
img_byte_arr.seek(0) | |
return StreamingResponse(img_byte_arr, media_type="image/png") | |
elif request.task_type == "audio": | |
audio = result[0] | |
audio_byte_arr = BytesIO() | |
audio.save(audio_byte_arr, format="wav") | |
audio_byte_arr.seek(0) | |
return StreamingResponse(audio_byte_arr, media_type="audio/wav") | |
elif request.task_type == "video": | |
video = result[0] | |
video_byte_arr = BytesIO() | |
video.save(video_byte_arr, format="mp4") | |
video_byte_arr.seek(0) | |
return StreamingResponse(video_byte_arr, media_type="video/mp4") | |
elif request.task_type == "classification": | |
if request.image_file is None: | |
raise HTTPException(status_code=400, detail="Image file is required for classification.") | |
contents = await request.image_file.read() | |
image = Image.open(BytesIO(contents)).convert("RGB") | |
model = model_data["model"].to(device) | |
processor = model_data["processor"] | |
inputs = processor(images=image, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predicted_class_idx = outputs.logits.argmax().item() | |
predicted_class = model.config.id2label[predicted_class_idx] | |
return JSONResponse({"predicted_class": predicted_class}) | |
elif request.task_type == "translation": | |
if request.source_language is None or request.target_language is None: | |
raise HTTPException(status_code=400, detail="Source and target languages are required for translation.") | |
model = model_data["model"].to(device) | |
tokenizer = model_data["tokenizer"] | |
inputs = tokenizer(request.input_text, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model.generate(**inputs) | |
translation = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return JSONResponse({"translation": translation}) | |
elif request.task_type == "question-answering": | |
if request.context is None: | |
raise HTTPException(status_code=400, detail="Context is required for question answering.") | |
model = model_data["model"].to(device) | |
tokenizer = model_data["tokenizer"] | |
inputs = tokenizer(question=request.input_text, context=request.context, return_tensors="pt").to(device) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
answer_start = torch.argmax(outputs.start_logits) | |
answer_end = torch.argmax(outputs.end_logits) + 1 | |
answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end])) | |
return JSONResponse({"answer": answer}) | |
elif request.task_type == "speech-to-text": | |
if request.audio_file is None: | |
raise HTTPException(status_code=400, detail="Audio file is required for speech-to-text.") | |
contents = await request.audio_file.read() | |
pipeline = model_data["pipeline"] | |
try: | |
transcription = pipeline(contents, sampling_rate=16000)[0]["text"] # Assuming 16kHz sampling rate | |
return JSONResponse({"transcription": transcription}) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during speech-to-text: {str(e)}") | |
elif request.task_type == "text-to-speech": | |
if not request.input_text: | |
raise HTTPException(status_code=400, detail="Input text is required for text-to-speech.") | |
pipeline = model_data["pipeline"] | |
try: | |
audio = pipeline(request.input_text)[0] | |
file_path = os.path.join(TEMP_DIR, f"{uuid.uuid4()}.wav") | |
audio.save(file_path) | |
background_tasks.add_task(os.remove, file_path) | |
return FileResponse(file_path, media_type="audio/wav") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during text-to-speech: {str(e)}") | |
elif request.task_type == "image-segmentation": | |
if request.image_file is None: | |
raise HTTPException(status_code=400, detail="Image file is required for image segmentation.") | |
contents = await request.image_file.read() | |
image = Image.open(BytesIO(contents)).convert("RGB") | |
pipeline = model_data["pipeline"] | |
result = pipeline(image) | |
mask = result[0]['mask'] | |
mask_byte_arr = BytesIO() | |
mask.save(mask_byte_arr, format="PNG") | |
mask_byte_arr.seek(0) | |
return StreamingResponse(mask_byte_arr, media_type="image/png") | |
elif request.task_type == "feature-extraction": | |
if request.raw_input is None: | |
raise HTTPException(status_code=400, detail="raw_input is required for feature extraction.") | |
feature_extractor = model_data["feature_extractor"] | |
try: | |
if isinstance(request.raw_input, str): | |
inputs = feature_extractor(text=request.raw_input, return_tensors="pt") | |
elif isinstance(request.raw_input, bytes): | |
image = Image.open(BytesIO(request.raw_input)).convert("RGB") | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
else: | |
raise ValueError("Unsupported raw_input type.") | |
features = inputs.pixel_values # Adjust according to your feature extractor | |
return JSONResponse({"features": features.tolist()}) | |
except Exception as fe: | |
raise HTTPException(status_code=400, detail=f"Error during feature extraction: {fe}") | |
elif request.task_type == "token-classification": | |
if request.input_text is None: | |
raise HTTPException(status_code=400, detail="Input text is required for token classification.") | |
model = model_data["model"].to(device) | |
tokenizer = model_data["tokenizer"] | |
inputs = tokenizer(request.input_text, return_tensors="pt", padding=True, truncation=True) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predictions = outputs.logits.argmax(dim=-1) | |
predicted_labels = [model.config.id2label[label_id] for label_id in predictions[0].tolist()] | |
return JSONResponse({"predicted_labels": predicted_labels}) | |
elif request.task_type == "fill-mask": | |
if request.masked_text is None: | |
raise HTTPException(status_code=400, detail="masked_text is required for fill-mask.") | |
model = model_data["model"].to(device) | |
tokenizer = model_data["tokenizer"] | |
inputs = tokenizer(request.masked_text, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
logits = outputs.logits | |
masked_index = torch.where(inputs.input_ids == tokenizer.mask_token_id)[1] | |
predicted_token_id = torch.argmax(logits[0, masked_index]) | |
predicted_token = tokenizer.decode(predicted_token_id) | |
return JSONResponse({"predicted_token": predicted_token}) | |
elif request.task_type == "image-inpainting": | |
if request.image_file is None or request.mask_image is None: | |
raise HTTPException(status_code=400, detail="image_file and mask_image are required for image inpainting.") | |
image_contents = await request.image_file.read() | |
mask_contents = await request.mask_image.read() | |
image = Image.open(BytesIO(image_contents)).convert("RGB") | |
mask = Image.open(BytesIO(mask_contents)).convert("L") # Assuming mask is grayscale | |
pipeline = model_data["pipeline"] | |
result = pipeline(image, mask) | |
inpainted_image = result[0] | |
img_byte_arr = BytesIO() | |
inpainted_image.save(img_byte_arr, format="PNG") | |
img_byte_arr.seek(0) | |
return StreamingResponse(img_byte_arr, media_type="image/png") | |
elif request.task_type == "image-super-resolution": | |
if request.low_res_image is None: | |
raise HTTPException(status_code=400, detail="low_res_image is required for image super-resolution.") | |
contents = await request.low_res_image.read() | |
image = Image.open(BytesIO(contents)).convert("RGB") | |
pipeline = model_data["pipeline"] | |
result = pipeline(image) | |
upscaled_image = result[0] | |
img_byte_arr = BytesIO() | |
upscaled_image.save(img_byte_arr, format="PNG") | |
img_byte_arr.seek(0) | |
return StreamingResponse(img_byte_arr, media_type="image/png") | |
elif request.task_type == "object-detection": | |
if request.image_file is None: | |
raise HTTPException(status_code=400, detail="Image file is required for object detection.") | |
contents = await request.image_file.read() | |
image = Image.open(BytesIO(contents)).convert("RGB") | |
pipeline = model_data["pipeline"] | |
image_processor = model_data["image_processor"] | |
inputs = image_processor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = pipeline(image) | |
detections = outputs | |
return JSONResponse({"detections": detections}) | |
elif request.task_type == "image-captioning": | |
if request.image_file is None: | |
raise HTTPException(status_code=400, detail="Image file is required for image captioning.") | |
contents = await request.image_file.read() | |
image = Image.open(BytesIO(contents)).convert("RGB") | |
pipeline = model_data["pipeline"] | |
caption = pipeline(image)[0]['generated_text'] | |
return JSONResponse({"caption": caption}) | |
elif request.task_type == "audio-transcription": | |
if request.audio_file is None: | |
raise HTTPException(status_code=400, detail="Audio file is required for audio transcription.") | |
try: | |
contents = await request.audio_file.read() | |
pipeline = model_data["pipeline"] | |
try: | |
transcription = pipeline(contents, sampling_rate=16000)[0]["text"] # Assuming 16kHz sampling rate | |
return JSONResponse({"transcription": transcription}) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during audio transcription (pipeline): {str(e)}") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error during audio transcription (file read): {str(e)}") | |
elif request.task_type == "summarization": | |
if request.input_text is None: | |
raise HTTPException(status_code=400, detail="Input text is required for summarization.") | |
model = model_data["model"].to(device) | |
tokenizer = model_data["tokenizer"] | |
inputs = tokenizer(request.input_text, return_tensors="pt", truncation=True, max_length=512) # added max_length for summarization | |
with torch.no_grad(): | |
outputs = model.generate(**inputs) | |
summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return JSONResponse({"summary": summary}) | |
else: | |
raise HTTPException(status_code=500, detail=f"Unsupported task type") | |
except Exception as e: | |
logger.exception(f"Internal server error: {str(e)}") | |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}") | |
async def root(request: Request): | |
return TEMPLATES.TemplateResponse("index.html", {"request": request}) | |
async def health_check(): | |
return {"status": "healthy"} | |
# Authentication Endpoints | |
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends()): | |
user = authenticate_user(form_data.username, form_data.password) | |
if not user: | |
raise HTTPException( | |
status_code=status.HTTP_401_UNAUTHORIZED, | |
detail="Incorrect username or password", | |
headers={"WWW-Authenticate": "Bearer"}, | |
) | |
access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) | |
access_token = create_access_token(data={"sub": user["username"]}, expires_delta=access_token_expires) | |
return {"access_token": access_token, "token_type": "bearer"} | |
def authenticate_user(username: str, password: str): | |
user = get_user(username) | |
if user and pwd_context.verify(password, user.hashed_password): | |
return {"username": user.username} | |
return None | |
def create_access_token(data: Dict[str, Any], expires_delta: timedelta = None): | |
to_encode = data.copy() | |
if expires_delta: | |
expire = datetime.utcnow() + expires_delta | |
else: | |
expire = datetime.utcnow() + timedelta(minutes=15) | |
to_encode.update({"exp": expire}) | |
encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) | |
return encoded_jwt | |
class Token(BaseModel): | |
access_token: str | |
token_type: str | |
async def read_users_me(current_user: str = Depends(get_current_user)): | |
return {"username": current_user} | |
async def get_current_user(token: str = Depends(oauth2_scheme)): | |
credentials_exception = HTTPException( | |
status_code=status.HTTP_401_UNAUTHORIZED, | |
detail="Could not validate credentials", | |
headers={"WWW-Authenticate": "Bearer"}, | |
) | |
try: | |
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) | |
username: str = payload.get("sub") | |
if username is None: | |
raise credentials_exception | |
token_data = {"username": username, "token": token} | |
except JWTError: | |
raise credentials_exception | |
user = get_user(username) | |
if user is None: | |
raise credentials_exception | |
return username | |
async def create_user(user: User): | |
try: | |
hashed_password = pwd_context.hash(user.password) | |
new_user = {"username": user.username, "email": user.email, "hashed_password": hashed_password} | |
inserted_user = insert_user(new_user) | |
if inserted_user: | |
return User(**inserted_user) | |
else: | |
raise HTTPException(status_code=500, detail="Failed to create user.") | |
except Exception as e: | |
logger.error(f"Error creating user: {e}") | |
raise HTTPException(status_code=500, detail=f"Error creating user: {e}") | |
async def update_user_data(username: str, user: User): | |
try: | |
hashed_password = pwd_context.hash(user.password) | |
updated_user_data = {"email": user.email, "hashed_password": hashed_password} | |
updated_user = update_user(username, updated_user_data) | |
if updated_user: | |
return User(**updated_user) | |
else: | |
raise HTTPException(status_code=404, detail="User not found") | |
except Exception as e: | |
logger.error(f"Error updating user: {e}") | |
raise HTTPException(status_code=500, detail="Error updating user.") | |
async def delete_user_account(username: str): | |
try: | |
deleted_user = delete_user(username) | |
if deleted_user: | |
return JSONResponse({"message": "User deleted successfully."}, status_code=200) | |
else: | |
raise HTTPException(status_code=404, detail="User not found") | |
except Exception as e: | |
logger.error(f"Error deleting user: {e}") | |
raise HTTPException(status_code=500, detail="Error deleting user.") | |
async def get_all_users_route(): | |
return get_all_users() | |
async def validation_exception_handler(request: Request, exc: RequestValidationError): | |
return JSONResponse( | |
status_code=status.HTTP_422_UNPROCESSABLE_ENTITY, | |
content=json.dumps({"detail": exc.errors(), "body": exc.body}), | |
) | |
if __name__ == "__main__": | |
create_db_and_table() # Initialize database on startup | |
uvicorn.run("main:app", host="0.0.0.0", port=7860, reload=True) | |