aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
7f05389 verified
raw
history blame
9.5 kB
import os
import logging
import threading
import boto3
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig, StoppingCriteriaList
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel, field_validator
from io import BytesIO
from huggingface_hub import hf_hub_download
import requests
import asyncio
import soundfile as sf
import numpy as np
from fastapi.responses import StreamingResponse, Response
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")
app = FastAPI()
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 200
stream: bool = False
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
chunk_delay: float = 0.0
stop_sequences: list[str] = []
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
def _download_from_s3(self, model_name):
try:
logging.info(f"Attempting to load model {model_name} from S3...")
model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"lilmeaty_garca/{model_name}")
if "Contents" not in model_files:
raise FileNotFoundError(f"Model files not found in S3 for {model_name}")
local_dir = f"/tmp/{model_name.replace('/', '-')}"
os.makedirs(local_dir, exist_ok=True)
for obj in model_files["Contents"]:
file_key = obj["Key"]
if file_key.endswith('/'):
continue
local_file_path = os.path.join(local_dir, os.path.basename(file_key))
self.s3_client.download_file(self.bucket_name, file_key, local_file_path)
return local_dir
except Exception as e:
logging.error(f"Error downloading from S3: {e}")
raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}")
async def load_model_and_tokenizer(self, model_name):
try:
model_dir = await asyncio.to_thread(self._download_from_s3, model_name)
config = AutoConfig.from_pretrained(model_dir)
tokenizer = AutoTokenizer.from_pretrained(model_dir, config=config)
model = AutoModelForCausalLM.from_pretrained(model_dir, config=config)
logging.info(f"Model {model_name} loaded from S3 successfully.")
return model, tokenizer
except Exception as e:
logging.exception(f"Error loading model: {e}")
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
def download_model_from_huggingface(self, model_name):
try:
logging.info(f"Downloading model {model_name} from Hugging Face...")
model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
self.s3_client.upload_file(model_dir, self.bucket_name, f"lilmeaty_garca/{model_name}")
logging.info(f"Model {model_name} saved to S3 successfully.")
except Exception as e:
logging.error(f"Error downloading model {model_name} from Hugging Face: {e}")
def download_all_models_in_background(self):
models_url = "https://huggingface.co/api/models"
try:
response = requests.get(models_url)
if response.status_code != 200:
logging.error("Error getting Hugging Face model list.")
raise HTTPException(status_code=500, detail="Error getting model list.")
models = response.json()
for model in models:
model_name = model["id"]
self.download_model_from_huggingface(model_name)
except Exception as e:
logging.error(f"Error downloading models in the background: {e}")
raise HTTPException(status_code=500, detail="Error downloading models in the background.")
def run_in_background(self):
threading.Thread(target=self.download_all_models_in_background, daemon=True).start()
@app.on_event("startup")
async def startup_event():
model_loader.run_in_background()
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: Request, body: GenerateRequest):
try:
validated_body = GenerateRequest(**body.model_dump())
model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if validated_body.task_type == "text-to-text":
generation_config = GenerationConfig(
temperature=validated_body.temperature,
max_new_tokens=validated_body.max_new_tokens,
top_p=validated_body.top_p,
top_k=validated_body.top_k,
repetition_penalty=validated_body.repetition_penalty,
do_sample=validated_body.do_sample,
num_return_sequences=validated_body.num_return_sequences
)
async def stream_text():
input_text = validated_body.input_text
generated_text = ""
max_length = model.config.max_position_embeddings
while True:
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
input_length = encoded_input["input_ids"].shape[1]
remaining_tokens = max_length - input_length
if remaining_tokens <= 0:
break
generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)
stopping_criteria = StoppingCriteriaList(
[lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
)
output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
generated_text += chunk
yield chunk
time.sleep(validated_body.chunk_delay)
input_text = generated_text
if validated_body.stream:
return StreamingResponse(stream_text(), media_type="text/plain")
else:
generated_text = ""
async for chunk in stream_text():
generated_text += chunk
return {"result": generated_text}
elif validated_body.task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
image = generator(validated_body.input_text)[0]
image_bytes = image.tobytes()
return Response(content=image_bytes, media_type="image/png")
elif validated_body.task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
audio = generator(validated_body.input_text)
audio_bytesio = BytesIO()
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
audio_bytes = audio_bytesio.getvalue()
return Response(content=audio_bytes, media_type="audio/wav")
elif validated_body.task_type == "text-to-video":
try:
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
video = generator(validated_body.input_text)
return Response(content=video, media_type="video/mp4")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
else:
raise HTTPException(status_code=400, detail="Unsupported task type")
except HTTPException as e:
raise e
except Exception as e:
logging.exception(f"An unexpected error occurred: {e}")
raise HTTPException(status_code=500, detail="An unexpected error occurred.")