Spaces:
Sleeping
Sleeping
import os | |
import logging | |
import time | |
from io import BytesIO | |
from fastapi import FastAPI, HTTPException, Response, Request | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
pipeline, | |
GenerationConfig | |
) | |
import boto3 | |
from huggingface_hub import hf_hub_download | |
import soundfile as sf | |
import numpy as np | |
import torch | |
import uvicorn | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
class GenerateRequest(BaseModel): | |
model_name: str | |
input_text: str | |
task_type: str | |
temperature: float = 1.0 | |
max_new_tokens: int = 200 | |
stream: bool = False | |
top_p: float = 1.0 | |
top_k: int = 50 | |
repetition_penalty: float = 1.0 | |
num_return_sequences: int = 1 | |
do_sample: bool = True | |
chunk_delay: float = 0.0 | |
class S3ModelLoader: | |
def __init__(self, bucket_name, s3_client): | |
self.bucket_name = bucket_name | |
self.s3_client = s3_client | |
def _get_s3_uri(self, model_name): | |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}" | |
async def load_model_and_tokenizer(self, model_name): | |
s3_uri = self._get_s3_uri(model_name) | |
try: | |
logging.info(f"Trying to load {model_name} from S3...") | |
config = AutoConfig.from_pretrained(s3_uri) | |
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config) | |
tokenizer = AutoTokenizer.from_pretrained(s3_uri) | |
logging.info(f"Loaded {model_name} from S3 successfully.") | |
return model, tokenizer | |
except EnvironmentError: | |
logging.info(f"Model {model_name} not found in S3. Downloading...") | |
try: | |
model = AutoModelForCausalLM.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN) | |
logging.info(f"Downloaded {model_name} successfully.") | |
logging.info(f"Saving {model_name} to S3...") | |
model.save_pretrained(s3_uri) | |
tokenizer.save_pretrained(s3_uri) | |
logging.info(f"Saved {model_name} to S3 successfully.") | |
return model, tokenizer | |
except Exception as e: | |
logging.error(f"Error downloading/uploading model: {e}") | |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}") | |
app = FastAPI() | |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION) | |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client) | |
async def generate(request: Request, body: GenerateRequest): | |
try: | |
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
if body.task_type == "text-to-text": | |
generation_config = GenerationConfig( | |
temperature=body.temperature, | |
max_new_tokens=body.max_new_tokens, | |
top_p=body.top_p, | |
top_k=body.top_k, | |
repetition_penalty=body.repetition_penalty, | |
do_sample=body.do_sample, | |
num_return_sequences=body.num_return_sequences | |
) | |
async def stream_text(): | |
input_text = body.input_text | |
generated_text = "" | |
max_length = model.config.max_position_embeddings | |
while True: | |
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device) | |
input_length = encoded_input["input_ids"].shape[1] | |
remaining_tokens = max_length - input_length | |
if remaining_tokens <= 0: | |
break | |
generation_config.max_new_tokens = min(remaining_tokens, body.max_new_tokens) | |
output = model.generate(**encoded_input, generation_config=generation_config) | |
chunk = tokenizer.decode(output[0], skip_special_tokens=True) | |
generated_text += chunk | |
yield chunk | |
time.sleep(body.chunk_delay) | |
input_text = generated_text | |
if body.stream: | |
return StreamingResponse(stream_text(), media_type="text/plain") | |
else: | |
generated_text = "" | |
async for chunk in stream_text(): | |
generated_text += chunk | |
return {"result": generated_text} | |
elif body.task_type == "text-to-image": | |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device) | |
image = generator(body.input_text)[0] | |
image_bytes = image.tobytes() | |
return Response(content=image_bytes, media_type="image/png") | |
elif body.task_type == "text-to-speech": | |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device) | |
audio = generator(body.input_text) | |
audio_bytesio = BytesIO() | |
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"])) | |
audio_bytes = audio_bytesio.getvalue() | |
return Response(content=audio_bytes, media_type="audio/wav") | |
elif body.task_type == "text-to-audio": | |
generator = pipeline("text-to-audio", model=model, tokenizer=tokenizer, device=device) | |
audio = generator(body.input_text) | |
audio_bytesio = BytesIO() | |
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"])) | |
audio_bytes = audio_bytesio.getvalue() | |
return Response(content=audio_bytes, media_type="audio/wav") | |
elif body.task_type == "text-to-video": | |
try: | |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device) | |
video = generator(body.input_text) | |
return Response(content=video, media_type="video/mp4") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}") | |
else: | |
raise HTTPException(status_code=400, detail="Unsupported task type") | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) |