Spaces:
Sleeping
Sleeping
import os | |
import logging | |
import requests | |
import threading | |
from io import BytesIO | |
from fastapi import FastAPI, HTTPException, Response, Request | |
from fastapi.responses import StreamingResponse | |
from pydantic import BaseModel | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
pipeline, | |
GenerationConfig | |
) | |
import boto3 | |
from huggingface_hub import hf_hub_download | |
import soundfile as sf | |
import numpy as np | |
import torch | |
import uvicorn | |
from tqdm import tqdm | |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
class GenerateRequest(BaseModel): | |
model_name: str | |
input_text: str | |
task_type: str | |
temperature: float = 1.0 | |
max_new_tokens: int = 200 | |
stream: bool = False | |
top_p: float = 1.0 | |
top_k: int = 50 | |
repetition_penalty: float = 1.0 | |
num_return_sequences: int = 1 | |
do_sample: bool = True | |
class S3ModelLoader: | |
def __init__(self, bucket_name, s3_client): | |
self.bucket_name = bucket_name | |
self.s3_client = s3_client | |
def _get_s3_uri(self, model_name): | |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}" | |
def download_model_from_s3(self, model_name): | |
try: | |
config = AutoConfig.from_pretrained(f"s3://{self.bucket_name}/{model_name}") | |
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config) | |
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}") | |
return model, tokenizer | |
except Exception: | |
return None, None | |
async def load_model_and_tokenizer(self, model_name): | |
try: | |
model, tokenizer = self.download_model_from_s3(model_name) | |
if model is None or tokenizer is None: | |
model, tokenizer = await self.download_and_save_model_from_huggingface(model_name) | |
return model, tokenizer | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}") | |
async def download_and_save_model_from_huggingface(self, model_name): | |
try: | |
with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}") as t: | |
model = AutoModelForCausalLM.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN, _tqdm=t) | |
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN) | |
self.upload_model_to_s3(model_name, model, tokenizer) | |
return model, tokenizer | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error downloading model from Hugging Face: {e}") | |
def upload_model_to_s3(self, model_name, model, tokenizer): | |
try: | |
s3_uri = self._get_s3_uri(model_name) | |
model.save_pretrained(s3_uri) | |
tokenizer.save_pretrained(s3_uri) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error saving model to S3: {e}") | |
app = FastAPI() | |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION) | |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client) | |
async def generate(request: Request, body: GenerateRequest): | |
try: | |
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model.to(device) | |
if body.task_type == "text-to-text": | |
generation_config = GenerationConfig( | |
temperature=body.temperature, | |
max_new_tokens=body.max_new_tokens, | |
top_p=body.top_p, | |
top_k=body.top_k, | |
repetition_penalty=body.repetition_penalty, | |
do_sample=body.do_sample, | |
num_return_sequences=body.num_return_sequences | |
) | |
async def stream_text(): | |
input_text = body.input_text | |
max_length = model.config.max_position_embeddings | |
generated_text = "" | |
while True: | |
inputs = tokenizer(input_text, return_tensors="pt").to(device) | |
input_length = inputs.input_ids.shape[1] | |
remaining_tokens = max_length - input_length | |
if remaining_tokens < body.max_new_tokens: | |
generation_config.max_new_tokens = remaining_tokens | |
if remaining_tokens <= 0: | |
break | |
output = model.generate(**inputs, generation_config=generation_config) | |
chunk = tokenizer.decode(output[0], skip_special_tokens=True) | |
generated_text += chunk | |
yield chunk | |
if len(tokenizer.encode(generated_text)) >= max_length: | |
break | |
input_text = chunk | |
if body.stream: | |
return StreamingResponse(stream_text(), media_type="text/plain") | |
else: | |
generated_text = "" | |
async for chunk in stream_text(): | |
generated_text += chunk | |
return {"result": generated_text} | |
elif body.task_type == "text-to-image": | |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device) | |
image = generator(body.input_text)[0] | |
image_bytes = image.tobytes() | |
return Response(content=image_bytes, media_type="image/png") | |
elif body.task_type == "text-to-speech": | |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device) | |
audio = generator(body.input_text) | |
audio_bytesio = BytesIO() | |
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"])) | |
audio_bytes = audio_bytesio.getvalue() | |
return Response(content=audio_bytes, media_type="audio/wav") | |
elif body.task_type == "text-to-video": | |
try: | |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device) | |
video = generator(body.input_text) | |
return Response(content=video, media_type="video/mp4") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}") | |
else: | |
raise HTTPException(status_code=400, detail="Unsupported task type") | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
def download_all_models_in_background(): | |
models_url = "https://huggingface.co/api/models" | |
try: | |
response = requests.get(models_url) | |
if response.status_code != 200: | |
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.") | |
models = response.json() | |
for model in models: | |
model_name = model["id"] | |
model_loader.download_and_save_model_from_huggingface(model_name) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.") | |
def run_in_background(): | |
threading.Thread(target=download_all_models_in_background, daemon=True).start() | |
async def startup_event(): | |
run_in_background() | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |