aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
a0b48c5 verified
raw
history blame
14.2 kB
import os
import torch
from fastapi import FastAPI, HTTPException
from fastapi.responses import StreamingResponse, JSONResponse
from pydantic import BaseModel, field_validator
from transformers import (
AutoConfig,
pipeline,
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
StoppingCriteria,
StoppingCriteriaList,
)
import boto3
import uvicorn
import asyncio
from transformers import pipeline
import json
from huggingface_hub import login
import base64
from botocore.exceptions import NoCredentialsError
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
if HUGGINGFACE_HUB_TOKEN:
login(token=HUGGINGFACE_HUB_TOKEN,
add_to_git_credential=False)
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION)
app = FastAPI()
class GenerateRequest(BaseModel):
model_name: str
input_text: str = ""
task_type: str
temperature: float = 1.0
max_new_tokens: int = 3
stream: bool = True
top_p: float = 1.0
top_k: int = 50
repetition_penalty: float = 1.0
num_return_sequences: int = 1
do_sample: bool = True
stop_sequences: list[str] = []
@field_validator("model_name")
def model_name_cannot_be_empty(cls, v):
if not v:
raise ValueError("model_name cannot be empty.")
return v
@field_validator("task_type")
def task_type_must_be_valid(cls, v):
valid_types = ["text-to-text", "text-to-image",
"text-to-speech", "text-to-video"]
if v not in valid_types:
raise ValueError(f"task_type must be one of: {valid_types}")
return v
model_cache = {}
class S3ModelLoader:
def __init__(self, bucket_name, s3_client):
self.bucket_name = bucket_name
self.s3_client = s3_client
def _get_s3_uri(self, model_name):
return f"s3://{self.bucket_name}/" \
f"{model_name.replace('/', '-')}"
async def load_model_and_tokenizer(self, model_name):
if model_name in model_cache:
return model_cache[model_name]
s3_uri = self._get_s3_uri(model_name)
try:
config = AutoConfig.from_pretrained(
s3_uri, local_files_only=False
)
model = AutoModelForCausalLM.from_pretrained(
s3_uri, config=config, local_files_only=False
)
tokenizer = AutoTokenizer.from_pretrained(
s3_uri, config=config, local_files_only=False
)
if tokenizer.eos_token_id is not None and \
tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id \
or tokenizer.eos_token_id
model_cache[model_name] = (model, tokenizer)
return model, tokenizer
except (EnvironmentError, NoCredentialsError):
try:
config = AutoConfig.from_pretrained(
model_name, token=HUGGINGFACE_HUB_TOKEN
)
tokenizer = AutoTokenizer.from_pretrained(
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
)
model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
)
if tokenizer.eos_token_id is not None and \
tokenizer.pad_token_id is None:
tokenizer.pad_token_id = config.pad_token_id \
or tokenizer.eos_token_id
model.save_pretrained(s3_uri)
tokenizer.save_pretrained(s3_uri)
config = AutoConfig.from_pretrained(
s3_uri, local_files_only=False
)
model = AutoModelForCausalLM.from_pretrained(
s3_uri, config=config, local_files_only=False
)
tokenizer = AutoTokenizer.from_pretrained(
s3_uri, config=config, local_files_only=False
)
model_cache[model_name] = (model, tokenizer)
return model, tokenizer
except Exception as e:
raise HTTPException(
status_code=500, detail=f"Error loading model: {e}"
)
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
temperature = request.temperature
max_new_tokens = request.max_new_tokens
stream = request.stream
top_p = request.top_p
top_k = request.top_k
repetition_penalty = request.repetition_penalty
num_return_sequences = request.num_return_sequences
do_sample = request.do_sample
stop_sequences = request.stop_sequences
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
if "text-to-text" == task_type:
generation_config = GenerationConfig(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
top_k=top_k,
repetition_penalty=repetition_penalty,
do_sample=do_sample,
num_return_sequences=num_return_sequences,
eos_token_id = tokenizer.eos_token_id
)
if stream:
return StreamingResponse(
stream_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device),
media_type="text/plain"
)
else:
result = await generate_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device)
return JSONResponse({"text": result, "is_end": True})
else:
return HTTPException(status_code=400, detail="Task type not text-to-text")
except Exception as e:
raise HTTPException(
status_code=500, detail=f"Internal server error: {str(e)}"
)
class StopOnSequences(StoppingCriteria):
def __init__(self, stop_sequences, tokenizer):
self.stop_sequences = stop_sequences
self.tokenizer = tokenizer
self.stop_ids = [tokenizer.encode(seq, add_special_tokens=False) for seq in stop_sequences]
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
for stop_sequence in self.stop_sequences:
if stop_sequence in decoded_text:
return True
return False
async def stream_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device):
encoded_input = tokenizer(
input_text, return_tensors="pt",
truncation=True
).to(device)
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
stopping_criteria = StoppingCriteriaList([stop_criteria])
output_text = ""
while True:
outputs = await asyncio.to_thread(model.generate,
**encoded_input,
do_sample=generation_config.do_sample,
max_new_tokens=generation_config.max_new_tokens,
temperature=generation_config.temperature,
top_p=generation_config.top_p,
top_k=generation_config.top_k,
repetition_penalty=generation_config.repetition_penalty,
num_return_sequences=generation_config.num_return_sequences,
output_scores=True,
return_dict_in_generate=True,
stopping_criteria=stopping_criteria
)
new_text = tokenizer.decode(
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
skip_special_tokens=True
)
if len(new_text) == 0:
if not stop_criteria(outputs.sequences, None):
for text in output_text.split():
yield json.dumps({"text": text, "is_end": False}) + "\n"
yield json.dumps({"text": "", "is_end": True}) + "\n"
break
output_text += new_text
for text in new_text.split():
yield json.dumps({"text": text, "is_end": False}) + "\n"
if stop_criteria(outputs.sequences, None):
yield json.dumps({"text": "", "is_end": True}) + "\n"
break
encoded_input = tokenizer(
output_text, return_tensors="pt",
truncation=True
).to(device)
output_text = ""
async def generate_text(model, tokenizer, input_text,
generation_config, stop_sequences,
device):
encoded_input = tokenizer(
input_text, return_tensors="pt",
truncation=True
).to(device)
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
stopping_criteria = StoppingCriteriaList([stop_criteria])
outputs = await asyncio.to_thread(model.generate,
**encoded_input,
do_sample=generation_config.do_sample,
max_new_tokens=generation_config.max_new_tokens,
temperature=generation_config.temperature,
top_p=generation_config.top_p,
top_k=generation_config.top_k,
repetition_penalty=generation_config.repetition_penalty,
num_return_sequences=generation_config.num_return_sequences,
output_scores=True,
return_dict_in_generate=True,
stopping_criteria=stopping_criteria
)
generated_text = tokenizer.decode(
outputs.sequences[0], skip_special_tokens=True
)
return generated_text
@app.post("/generate-image")
async def generate_image(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
if validated_body.model_name not in model_cache:
model = pipeline(
"text-to-image", model=validated_body.model_name,
device=device
)
model_cache[validated_body.model_name] = model
else:
model = model_cache[validated_body.model_name]
image = model(validated_body.input_text)[0]
image_data = list(image.getdata())
return json.dumps({"image_data": image_data, "is_end": True})
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Internal server error: {str(e)}"
)
@app.post("/generate-text-to-speech")
async def generate_text_to_speech(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
if validated_body.model_name not in model_cache:
audio_generator = pipeline(
"text-to-speech", model=validated_body.model_name,
device=device
)
model_cache[validated_body.model_name] = audio_generator
else:
audio_generator = model_cache[validated_body.model_name]
audio = audio_generator(validated_body.input_text)
audio_bytes = audio["audio"]
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
return json.dumps({"audio": audio_base64, "is_end": True})
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Internal server error: {str(e)}"
)
@app.post("/generate-video")
async def generate_video(request: GenerateRequest):
try:
validated_body = request
device = "cuda" if torch.cuda.is_available() else "cpu"
if validated_body.model_name not in model_cache:
video_generator = pipeline(
"text-to-video", model=validated_body.model_name,
device=device
)
model_cache[validated_body.model_name] = video_generator
else:
video_generator = model_cache[validated_body.model_name]
video = video_generator(validated_body.input_text)
video_base64 = base64.b64encode(video).decode('utf-8')
return json.dumps({"video": video_base64, "is_end": True})
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Internal server error: {str(e)}"
)
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)