Spaces:
Sleeping
Sleeping
import os | |
import json | |
import logging | |
import boto3 | |
from fastapi import FastAPI, HTTPException | |
from fastapi.responses import JSONResponse | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from huggingface_hub import hf_hub_download | |
from tqdm import tqdm | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") | |
s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
app = FastAPI() | |
PIPELINE_MAP = { | |
"text-generation": "text-generation", | |
"sentiment-analysis": "sentiment-analysis", | |
"translation": "translation", | |
"fill-mask": "fill-mask", | |
"question-answering": "question-answering", | |
"text-to-speech": "text-to-speech", | |
"text-to-video": "text-to-video", | |
"text-to-image": "text-to-image" | |
} | |
class S3DirectStream: | |
def __init__(self, bucket_name): | |
self.s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
self.bucket_name = bucket_name | |
def stream_from_s3(self, key): | |
try: | |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) | |
return response['Body'] | |
except self.s3_client.exceptions.NoSuchKey: | |
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}") | |
def get_model_file_parts(self, model_name): | |
try: | |
model_prefix = model_name.lower() | |
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix) | |
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']] | |
return model_files | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}") | |
def load_model_from_s3(self, model_name): | |
try: | |
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name) | |
model_prefix = f"{profile}/{model}".lower() | |
model_files = self.get_model_file_parts(model_prefix) | |
if not model_files: | |
self.download_and_upload_from_huggingface(model_name) | |
model_files = self.get_model_file_parts(model_prefix) | |
if not model_files: | |
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.") | |
config_stream = self.stream_from_s3(f"{model_prefix}/config.json") | |
config_data = config_stream.read() | |
if not config_data: | |
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o.") | |
config_text = config_data.decode("utf-8") | |
config_json = json.loads(config_text) | |
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False) | |
return model | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
try: | |
logger.error(f"Error al cargar el modelo desde S3, intentando desde Hugging Face: {e}") | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
return model | |
except Exception as hf_error: | |
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde Hugging Face: {hf_error}") | |
def load_tokenizer_from_s3(self, model_name): | |
try: | |
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name) | |
tokenizer_stream = self.stream_from_s3(f"{profile}/{model}/tokenizer.json") | |
tokenizer_data = tokenizer_stream.read().decode("utf-8") | |
tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}") | |
return tokenizer | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}") | |
def download_and_upload_from_huggingface(self, model_name): | |
try: | |
files_to_download = hf_hub_download(repo_id=model_name, use_auth_token=HUGGINGFACE_TOKEN, local_dir=model_name) | |
for file in tqdm(files_to_download, desc="Subiendo archivos a S3"): | |
file_name = os.path.basename(file) | |
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name) | |
s3_key = f"{profile}/{model}/{file_name}" | |
if not self.file_exists_in_s3(s3_key): | |
self.upload_file_to_s3(file, s3_key) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al descargar y subir modelo desde Hugging Face: {e}") | |
def upload_file_to_s3(self, file_path, s3_key): | |
try: | |
self.create_s3_folders(s3_key) | |
s3_client.put_object(Bucket=self.bucket_name, Key=s3_key, Body=open(file_path, 'rb')) | |
os.remove(file_path) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al subir archivo a S3: {e}") | |
def create_s3_folders(self, s3_key): | |
try: | |
folder_keys = s3_key.split('/') | |
for i in range(1, len(folder_keys)): | |
folder_key = '/'.join(folder_keys[:i]) + '/' | |
if not self.file_exists_in_s3(folder_key): | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='') | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}") | |
def file_exists_in_s3(self, s3_key): | |
try: | |
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key) | |
return True | |
except self.s3_client.exceptions.ClientError: | |
return False | |
async def predict(model_request: dict): | |
try: | |
model_name = model_request.get("model_name") | |
task = model_request.get("pipeline_task") | |
input_text = model_request.get("input_text") | |
if not model_name or not task or not input_text: | |
raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.") | |
streamer = S3DirectStream(S3_BUCKET_NAME) | |
model = streamer.load_model_from_s3(model_name) | |
tokenizer = streamer.load_tokenizer_from_s3(model_name) | |
if task not in PIPELINE_MAP: | |
raise HTTPException(status_code=400, detail="Pipeline task no soportado") | |
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer) | |
result = nlp_pipeline(input_text) | |
if isinstance(result, dict) and 'file' in result: | |
return JSONResponse(content={"file": result['file']}) | |
else: | |
return JSONResponse(content={"result": result}) | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}") | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |