aws_test / app.py
Hjgugugjhuhjggg's picture
Update app.py
cb66b7a verified
raw
history blame
7.86 kB
import os
import json
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import boto3
import logging
from huggingface_hub import hf_hub_download
# Configuración de AWS y Hugging Face
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
# Cliente de S3
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
class GenerateRequest(BaseModel):
model_name: str
input_text: str
task_type: str
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
async def download_and_upload_to_s3(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
# Descargar el archivo config.json desde Hugging Face
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN)
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN)
# Verificar si la carpeta y los archivos ya existen en S3
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
logging.info(f"El archivo config.json no existe en S3. Subiendo desde Hugging Face...")
self.create_folder_if_not_exists(model_name)
with open(config_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
logging.info(f"El archivo tokenizer.json no existe en S3. Subiendo desde Hugging Face...")
self.create_folder_if_not_exists(model_name)
with open(tokenizer_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
except Exception as e:
logging.error(f"Error al cargar el modelo desde Hugging Face a S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo: {str(e)}")
async def file_exists_in_s3(self, s3_key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
return True
except self.s3_client.exceptions.ClientError:
return False
def create_folder_if_not_exists(self, model_name):
try:
# Las carpetas no existen como tal en S3, pero se pueden crear archivos vacíos para simular carpetas
# Crear un archivo vacío para simular la carpeta
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/")
except Exception as e:
logging.error(f"Error al crear la carpeta en S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al crear la carpeta en S3: {str(e)}")
async def load_model_from_s3(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
model_files = await self.get_model_file_parts(model_name)
if not model_files:
await self.download_and_upload_to_s3(model_name)
# Cargar configuración del modelo desde S3
config_data = await self.stream_from_s3(f"{model_name}/config.json")
if isinstance(config_data, bytes):
config_data = config_data.decode("utf-8")
config_json = json.loads(config_data)
# Cargar el modelo
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json)
return model
except HTTPException as e:
raise e
except Exception as e:
logging.error(f"Error al cargar el modelo desde S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {str(e)}")
async def load_tokenizer_from_s3(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
tokenizer_data = await self.stream_from_s3(f"{model_name}/tokenizer.json")
if isinstance(tokenizer_data, bytes):
tokenizer_data = tokenizer_data.decode("utf-8")
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
return tokenizer
except Exception as e:
logging.error(f"Error al cargar el tokenizer desde S3: {e}")
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {str(e)}")
async def stream_from_s3(self, key):
try:
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body'].read()
except self.s3_client.exceptions.NoSuchKey:
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
async def get_model_file_parts(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name)
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']]
return model_files
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {str(e)}")
@app.post("/generate")
async def generate(request: GenerateRequest):
try:
model_name = request.model_name
input_text = request.input_text
task_type = request.task_type
s3_direct_stream = S3DirectStream(S3_BUCKET_NAME)
model = await s3_direct_stream.load_model_from_s3(model_name)
tokenizer = await s3_direct_stream.load_tokenizer_from_s3(model_name)
if task_type == "text-to-text":
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
result = generator(input_text, max_length=1024, num_return_sequences=1)
return {"result": result[0]["generated_text"]}
elif task_type == "text-to-image":
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=0)
image = generator(input_text)
return {"result": image}
elif task_type == "text-to-speech":
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=0)
audio = generator(input_text)
return {"result": audio}
elif task_type == "text-to-video":
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=0)
video = generator(input_text)
return {"result": video}
else:
raise HTTPException(status_code=400, detail="Tipo de tarea no soportada")
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)