Spaces:
Sleeping
Sleeping
import os | |
import json | |
from fastapi import FastAPI, HTTPException | |
from pydantic import BaseModel | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
import boto3 | |
import logging | |
from huggingface_hub import hf_hub_download | |
# Configuración de AWS y Hugging Face | |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") | |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") | |
AWS_REGION = os.getenv("AWS_REGION") | |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") | |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN") | |
# Cliente de S3 | |
s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
app = FastAPI() | |
class GenerateRequest(BaseModel): | |
model_name: str | |
input_text: str | |
task_type: str | |
class S3DirectStream: | |
def __init__(self, bucket_name): | |
self.s3_client = boto3.client( | |
's3', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION | |
) | |
self.bucket_name = bucket_name | |
async def download_and_upload_to_s3(self, model_name): | |
try: | |
model_name = model_name.replace("/", "-").lower() | |
# Descargar el archivo config.json desde Hugging Face | |
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN) | |
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN) | |
# Verificar si la carpeta y los archivos ya existen en S3 | |
if not await self.file_exists_in_s3(f"{model_name}/config.json"): | |
logging.info(f"El archivo config.json no existe en S3. Subiendo desde Hugging Face...") | |
self.create_folder_if_not_exists(model_name) | |
with open(config_file, "rb") as file: | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file) | |
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"): | |
logging.info(f"El archivo tokenizer.json no existe en S3. Subiendo desde Hugging Face...") | |
self.create_folder_if_not_exists(model_name) | |
with open(tokenizer_file, "rb") as file: | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file) | |
except Exception as e: | |
logging.error(f"Error al cargar el modelo desde Hugging Face a S3: {e}") | |
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo: {str(e)}") | |
async def file_exists_in_s3(self, s3_key): | |
try: | |
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key) | |
return True | |
except self.s3_client.exceptions.ClientError: | |
return False | |
def create_folder_if_not_exists(self, model_name): | |
try: | |
# Las carpetas no existen como tal en S3, pero se pueden crear archivos vacíos para simular carpetas | |
# Crear un archivo vacío para simular la carpeta | |
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/") | |
except Exception as e: | |
logging.error(f"Error al crear la carpeta en S3: {e}") | |
raise HTTPException(status_code=500, detail=f"Error al crear la carpeta en S3: {str(e)}") | |
async def load_model_from_s3(self, model_name): | |
try: | |
model_name = model_name.replace("/", "-").lower() | |
model_files = await self.get_model_file_parts(model_name) | |
if not model_files: | |
await self.download_and_upload_to_s3(model_name) | |
# Cargar configuración del modelo desde S3 | |
config_data = await self.stream_from_s3(f"{model_name}/config.json") | |
if isinstance(config_data, bytes): | |
config_data = config_data.decode("utf-8") | |
config_json = json.loads(config_data) | |
# Cargar el modelo | |
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json) | |
return model | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
logging.error(f"Error al cargar el modelo desde S3: {e}") | |
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {str(e)}") | |
async def load_tokenizer_from_s3(self, model_name): | |
try: | |
model_name = model_name.replace("/", "-").lower() | |
tokenizer_data = await self.stream_from_s3(f"{model_name}/tokenizer.json") | |
if isinstance(tokenizer_data, bytes): | |
tokenizer_data = tokenizer_data.decode("utf-8") | |
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}") | |
return tokenizer | |
except Exception as e: | |
logging.error(f"Error al cargar el tokenizer desde S3: {e}") | |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {str(e)}") | |
async def stream_from_s3(self, key): | |
try: | |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key) | |
return response['Body'].read() | |
except self.s3_client.exceptions.NoSuchKey: | |
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.") | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}") | |
async def get_model_file_parts(self, model_name): | |
try: | |
model_name = model_name.replace("/", "-").lower() | |
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name) | |
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']] | |
return model_files | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {str(e)}") | |
async def generate(request: GenerateRequest): | |
try: | |
model_name = request.model_name | |
input_text = request.input_text | |
task_type = request.task_type | |
s3_direct_stream = S3DirectStream(S3_BUCKET_NAME) | |
model = await s3_direct_stream.load_model_from_s3(model_name) | |
tokenizer = await s3_direct_stream.load_tokenizer_from_s3(model_name) | |
if task_type == "text-to-text": | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) | |
result = generator(input_text, max_length=1024, num_return_sequences=1) | |
return {"result": result[0]["generated_text"]} | |
elif task_type == "text-to-image": | |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=0) | |
image = generator(input_text) | |
return {"result": image} | |
elif task_type == "text-to-speech": | |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=0) | |
audio = generator(input_text) | |
return {"result": audio} | |
elif task_type == "text-to-video": | |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=0) | |
video = generator(input_text) | |
return {"result": video} | |
else: | |
raise HTTPException(status_code=400, detail="Tipo de tarea no soportada") | |
except HTTPException as e: | |
raise e | |
except Exception as e: | |
raise HTTPException(status_code=500, detail=str(e)) | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) | |