Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,36 +1,40 @@
|
|
1 |
import os
|
2 |
import logging
|
3 |
-
import
|
4 |
import threading
|
5 |
from io import BytesIO
|
6 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from fastapi.responses import StreamingResponse
|
8 |
-
from pydantic import BaseModel
|
9 |
from transformers import (
|
10 |
AutoConfig,
|
11 |
AutoModelForCausalLM,
|
12 |
AutoTokenizer,
|
|
|
13 |
GenerationConfig,
|
14 |
-
|
15 |
)
|
16 |
-
import
|
17 |
-
import torch
|
18 |
import uvicorn
|
19 |
|
20 |
-
|
21 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
22 |
|
23 |
-
# Variables de entorno
|
24 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
25 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
26 |
AWS_REGION = os.getenv("AWS_REGION")
|
27 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
28 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
29 |
|
30 |
-
# Clase para la petici贸n de generaci贸n
|
31 |
class GenerateRequest(BaseModel):
|
32 |
model_name: str
|
33 |
-
input_text: str
|
34 |
task_type: str
|
35 |
temperature: float = 1.0
|
36 |
max_new_tokens: int = 200
|
@@ -40,11 +44,24 @@ class GenerateRequest(BaseModel):
|
|
40 |
repetition_penalty: float = 1.0
|
41 |
num_return_sequences: int = 1
|
42 |
do_sample: bool = True
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
# Clase para cargar modelos desde S3
|
48 |
class S3ModelLoader:
|
49 |
def __init__(self, bucket_name, s3_client):
|
50 |
self.bucket_name = bucket_name
|
@@ -53,105 +70,126 @@ class S3ModelLoader:
|
|
53 |
def _get_s3_uri(self, model_name):
|
54 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
55 |
|
56 |
-
def
|
|
|
57 |
try:
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
model.config.eos_token_id = tokenizer.eos_token_id
|
65 |
-
if model.config.pad_token_id is None:
|
66 |
-
model.config.pad_token_id = tokenizer.pad_token_id
|
67 |
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
async def load_model_and_tokenizer(self, model_name):
|
73 |
try:
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
77 |
return model, tokenizer
|
78 |
except Exception as e:
|
|
|
79 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
80 |
|
81 |
-
|
82 |
try:
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
# Asegurarse de que el `eos_token_id` y `pad_token_id` est茅n definidos
|
88 |
-
if model.config.eos_token_id is None:
|
89 |
-
model.config.eos_token_id = tokenizer.eos_token_id
|
90 |
-
if model.config.pad_token_id is None:
|
91 |
-
model.config.pad_token_id = tokenizer.pad_token_id
|
92 |
-
|
93 |
-
self.upload_model_to_s3(model_name, model, tokenizer)
|
94 |
-
return model, tokenizer
|
95 |
except Exception as e:
|
96 |
-
|
97 |
|
98 |
-
def
|
|
|
99 |
try:
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
except Exception as e:
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
# Crear la instancia de FastAPI
|
107 |
app = FastAPI()
|
108 |
|
109 |
-
# Instanciar model_loader aqu铆
|
110 |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
|
111 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
112 |
|
113 |
-
# Funci贸n de generaci贸n asincr贸nica
|
114 |
@app.post("/generate")
|
115 |
-
async def generate(body: GenerateRequest):
|
116 |
try:
|
117 |
-
|
|
|
118 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
119 |
model.to(device)
|
120 |
|
121 |
-
if
|
122 |
generation_config = GenerationConfig(
|
123 |
-
temperature=
|
124 |
-
max_new_tokens=
|
125 |
-
top_p=
|
126 |
-
top_k=
|
127 |
-
repetition_penalty=
|
128 |
-
do_sample=
|
129 |
-
num_return_sequences=
|
130 |
)
|
131 |
|
132 |
async def stream_text():
|
133 |
-
input_text =
|
134 |
-
max_length = model.config.max_position_embeddings
|
135 |
generated_text = ""
|
|
|
136 |
|
137 |
while True:
|
138 |
-
|
139 |
-
input_length =
|
140 |
remaining_tokens = max_length - input_length
|
141 |
-
if remaining_tokens < body.max_new_tokens:
|
142 |
-
generation_config.max_new_tokens = remaining_tokens
|
143 |
-
if remaining_tokens <= 0:
|
144 |
-
break
|
145 |
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
|
148 |
generated_text += chunk
|
149 |
yield chunk
|
150 |
-
|
151 |
-
|
152 |
-
input_text = chunk
|
153 |
|
154 |
-
if
|
155 |
return StreamingResponse(stream_text(), media_type="text/plain")
|
156 |
else:
|
157 |
generated_text = ""
|
@@ -159,24 +197,24 @@ async def generate(body: GenerateRequest):
|
|
159 |
generated_text += chunk
|
160 |
return {"result": generated_text}
|
161 |
|
162 |
-
elif
|
163 |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
|
164 |
-
image = generator(
|
165 |
image_bytes = image.tobytes()
|
166 |
return Response(content=image_bytes, media_type="image/png")
|
167 |
|
168 |
-
elif
|
169 |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
|
170 |
-
audio = generator(
|
171 |
audio_bytesio = BytesIO()
|
172 |
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
|
173 |
audio_bytes = audio_bytesio.getvalue()
|
174 |
return Response(content=audio_bytes, media_type="audio/wav")
|
175 |
|
176 |
-
elif
|
177 |
try:
|
178 |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
|
179 |
-
video = generator(
|
180 |
return Response(content=video, media_type="video/mp4")
|
181 |
except Exception as e:
|
182 |
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
|
@@ -186,38 +224,11 @@ async def generate(body: GenerateRequest):
|
|
186 |
|
187 |
except HTTPException as e:
|
188 |
raise e
|
|
|
|
|
189 |
except Exception as e:
|
190 |
-
|
|
|
191 |
|
192 |
-
# Descargar todos los modelos en segundo plano
|
193 |
-
async def download_all_models_in_background():
|
194 |
-
models_url = "https://huggingface.co/api/models"
|
195 |
-
try:
|
196 |
-
# Se obtiene la lista de modelos
|
197 |
-
response = requests.get(models_url)
|
198 |
-
if response.status_code != 200:
|
199 |
-
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.")
|
200 |
-
|
201 |
-
models = response.json()
|
202 |
-
for model in models:
|
203 |
-
model_name = model["id"]
|
204 |
-
# Verifica si ya est谩 en S3 antes de intentar descargarlo
|
205 |
-
try:
|
206 |
-
await model_loader.download_and_save_model_from_huggingface(model_name)
|
207 |
-
except Exception as e:
|
208 |
-
logging.error(f"Error descargando o guardando el modelo {model_name}: {str(e)}")
|
209 |
-
|
210 |
-
except Exception as e:
|
211 |
-
logging.error(f"Error al obtener modelos de Hugging Face: {str(e)}")
|
212 |
-
|
213 |
-
# Funci贸n que corre en segundo plano para descargar modelos
|
214 |
-
def run_in_background():
|
215 |
-
threading.Thread(target=download_all_models_in_background, daemon=True).start()
|
216 |
-
|
217 |
-
# Si este archivo se ejecuta directamente, inicia el servidor
|
218 |
if __name__ == "__main__":
|
219 |
-
# Ejecutar la descarga de modelos en segundo plano
|
220 |
-
run_in_background()
|
221 |
-
|
222 |
-
# Iniciar el servidor FastAPI
|
223 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
+
import time
|
4 |
import threading
|
5 |
from io import BytesIO
|
6 |
+
from typing import Union
|
7 |
+
import requests
|
8 |
+
import boto3
|
9 |
+
import torch
|
10 |
+
import safetensors
|
11 |
+
import soundfile as sf
|
12 |
+
import numpy as np
|
13 |
+
from fastapi import FastAPI, HTTPException, Response, Request, UploadFile, File
|
14 |
from fastapi.responses import StreamingResponse
|
15 |
+
from pydantic import BaseModel, ValidationError, field_validator
|
16 |
from transformers import (
|
17 |
AutoConfig,
|
18 |
AutoModelForCausalLM,
|
19 |
AutoTokenizer,
|
20 |
+
pipeline,
|
21 |
GenerationConfig,
|
22 |
+
StoppingCriteriaList
|
23 |
)
|
24 |
+
from huggingface_hub import hf_hub_download
|
|
|
25 |
import uvicorn
|
26 |
|
27 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")
|
|
|
28 |
|
|
|
29 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
30 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
31 |
AWS_REGION = os.getenv("AWS_REGION")
|
32 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
33 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
34 |
|
|
|
35 |
class GenerateRequest(BaseModel):
|
36 |
model_name: str
|
37 |
+
input_text: str = ""
|
38 |
task_type: str
|
39 |
temperature: float = 1.0
|
40 |
max_new_tokens: int = 200
|
|
|
44 |
repetition_penalty: float = 1.0
|
45 |
num_return_sequences: int = 1
|
46 |
do_sample: bool = True
|
47 |
+
chunk_delay: float = 0.0
|
48 |
+
stop_sequences: list[str] = []
|
49 |
+
|
50 |
+
model_config = {"protected_namespaces": ()}
|
51 |
|
52 |
+
@field_validator("model_name")
|
53 |
+
def model_name_cannot_be_empty(cls, v):
|
54 |
+
if not v:
|
55 |
+
raise ValueError("model_name cannot be empty.")
|
56 |
+
return v
|
57 |
+
|
58 |
+
@field_validator("task_type")
|
59 |
+
def task_type_must_be_valid(cls, v):
|
60 |
+
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
|
61 |
+
if v not in valid_types:
|
62 |
+
raise ValueError(f"task_type must be one of: {valid_types}")
|
63 |
+
return v
|
64 |
|
|
|
65 |
class S3ModelLoader:
|
66 |
def __init__(self, bucket_name, s3_client):
|
67 |
self.bucket_name = bucket_name
|
|
|
70 |
def _get_s3_uri(self, model_name):
|
71 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
72 |
|
73 |
+
def _download_from_s3(self, model_name):
|
74 |
+
s3_uri = self._get_s3_uri(model_name)
|
75 |
try:
|
76 |
+
logging.info(f"Attempting to load model {model_name} from S3...")
|
77 |
+
model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name)
|
78 |
+
if "Contents" not in model_files:
|
79 |
+
raise FileNotFoundError(f"Model files not found in S3 for {model_name}")
|
80 |
|
81 |
+
local_dir = f"/tmp/{model_name.replace('/', '-')}"
|
82 |
+
os.makedirs(local_dir, exist_ok=True)
|
|
|
|
|
|
|
83 |
|
84 |
+
for obj in model_files["Contents"]:
|
85 |
+
file_key = obj["Key"]
|
86 |
+
if file_key.endswith('/'):
|
87 |
+
continue
|
88 |
+
|
89 |
+
local_file_path = os.path.join(local_dir, os.path.basename(file_key))
|
90 |
+
self.s3_client.download_file(self.bucket_name, file_key, local_file_path)
|
91 |
+
|
92 |
+
return local_dir
|
93 |
+
except Exception as e:
|
94 |
+
logging.error(f"Error downloading from S3: {e}")
|
95 |
+
raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}")
|
96 |
|
97 |
async def load_model_and_tokenizer(self, model_name):
|
98 |
try:
|
99 |
+
model_dir = await self._download_from_s3(model_name)
|
100 |
+
config = AutoConfig.from_pretrained(model_dir)
|
101 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir, config=config)
|
102 |
+
model = AutoModelForCausalLM.from_pretrained(model_dir, config=config)
|
103 |
+
|
104 |
+
logging.info(f"Model {model_name} loaded from S3 successfully.")
|
105 |
return model, tokenizer
|
106 |
except Exception as e:
|
107 |
+
logging.exception(f"Error loading model: {e}")
|
108 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
109 |
|
110 |
+
def download_model_from_huggingface(self, model_name):
|
111 |
try:
|
112 |
+
logging.info(f"Downloading model {model_name} from Hugging Face...")
|
113 |
+
model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
|
114 |
+
self.s3_client.upload_file(model_dir, self.bucket_name, model_name)
|
115 |
+
logging.info(f"Model {model_name} saved to S3 successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
except Exception as e:
|
117 |
+
logging.error(f"Error downloading model {model_name} from Hugging Face: {e}")
|
118 |
|
119 |
+
def download_all_models_in_background(self):
|
120 |
+
models_url = "https://huggingface.co/api/models"
|
121 |
try:
|
122 |
+
response = requests.get(models_url)
|
123 |
+
if response.status_code != 200:
|
124 |
+
logging.error("Error getting Hugging Face model list.")
|
125 |
+
raise HTTPException(status_code=500, detail="Error getting model list.")
|
126 |
+
|
127 |
+
models = response.json()
|
128 |
+
for model in models:
|
129 |
+
model_name = model["id"]
|
130 |
+
self.download_model_from_huggingface(model_name)
|
131 |
except Exception as e:
|
132 |
+
logging.error(f"Error downloading models in the background: {e}")
|
133 |
+
raise HTTPException(status_code=500, detail="Error downloading models in the background.")
|
134 |
+
|
135 |
+
def run_in_background(self):
|
136 |
+
threading.Thread(target=self.download_all_models_in_background, daemon=True).start()
|
137 |
+
|
138 |
+
@app.on_event("startup")
|
139 |
+
async def startup_event():
|
140 |
+
model_loader.run_in_background()
|
141 |
|
|
|
142 |
app = FastAPI()
|
143 |
|
|
|
144 |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
|
145 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
146 |
|
|
|
147 |
@app.post("/generate")
|
148 |
+
async def generate(request: Request, body: GenerateRequest):
|
149 |
try:
|
150 |
+
validated_body = GenerateRequest(**body.model_dump())
|
151 |
+
model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name)
|
152 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
153 |
model.to(device)
|
154 |
|
155 |
+
if validated_body.task_type == "text-to-text":
|
156 |
generation_config = GenerationConfig(
|
157 |
+
temperature=validated_body.temperature,
|
158 |
+
max_new_tokens=validated_body.max_new_tokens,
|
159 |
+
top_p=validated_body.top_p,
|
160 |
+
top_k=validated_body.top_k,
|
161 |
+
repetition_penalty=validated_body.repetition_penalty,
|
162 |
+
do_sample=validated_body.do_sample,
|
163 |
+
num_return_sequences=validated_body.num_return_sequences
|
164 |
)
|
165 |
|
166 |
async def stream_text():
|
167 |
+
input_text = validated_body.input_text
|
|
|
168 |
generated_text = ""
|
169 |
+
max_length = model.config.max_position_embeddings
|
170 |
|
171 |
while True:
|
172 |
+
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
|
173 |
+
input_length = encoded_input["input_ids"].shape[1]
|
174 |
remaining_tokens = max_length - input_length
|
|
|
|
|
|
|
|
|
175 |
|
176 |
+
if remaining_tokens <= 0:
|
177 |
+
break
|
178 |
+
|
179 |
+
generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)
|
180 |
+
|
181 |
+
stopping_criteria = StoppingCriteriaList(
|
182 |
+
[lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
|
183 |
+
)
|
184 |
+
|
185 |
+
output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
|
186 |
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
|
187 |
generated_text += chunk
|
188 |
yield chunk
|
189 |
+
time.sleep(validated_body.chunk_delay)
|
190 |
+
input_text = generated_text
|
|
|
191 |
|
192 |
+
if validated_body.stream:
|
193 |
return StreamingResponse(stream_text(), media_type="text/plain")
|
194 |
else:
|
195 |
generated_text = ""
|
|
|
197 |
generated_text += chunk
|
198 |
return {"result": generated_text}
|
199 |
|
200 |
+
elif validated_body.task_type == "text-to-image":
|
201 |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
|
202 |
+
image = generator(validated_body.input_text)[0]
|
203 |
image_bytes = image.tobytes()
|
204 |
return Response(content=image_bytes, media_type="image/png")
|
205 |
|
206 |
+
elif validated_body.task_type == "text-to-speech":
|
207 |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
|
208 |
+
audio = generator(validated_body.input_text)
|
209 |
audio_bytesio = BytesIO()
|
210 |
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
|
211 |
audio_bytes = audio_bytesio.getvalue()
|
212 |
return Response(content=audio_bytes, media_type="audio/wav")
|
213 |
|
214 |
+
elif validated_body.task_type == "text-to-video":
|
215 |
try:
|
216 |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
|
217 |
+
video = generator(validated_body.input_text)
|
218 |
return Response(content=video, media_type="video/mp4")
|
219 |
except Exception as e:
|
220 |
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
|
|
|
224 |
|
225 |
except HTTPException as e:
|
226 |
raise e
|
227 |
+
except ValidationError as e:
|
228 |
+
raise HTTPException(status_code=422, detail=e.errors())
|
229 |
except Exception as e:
|
230 |
+
logging.exception(f"An unexpected error occurred: {e}")
|
231 |
+
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
234 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|