Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
import torch
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
-
from pydantic import BaseModel
|
6 |
from transformers import (
|
7 |
AutoConfig,
|
8 |
pipeline,
|
@@ -11,25 +11,24 @@ from transformers import (
|
|
11 |
GenerationConfig,
|
12 |
StoppingCriteriaList
|
13 |
)
|
14 |
-
import boto3
|
15 |
-
import uvicorn
|
16 |
import asyncio
|
17 |
from io import BytesIO
|
18 |
-
from transformers import pipeline
|
19 |
|
|
|
|
|
|
|
|
|
20 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
21 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
22 |
AWS_REGION = os.getenv("AWS_REGION")
|
23 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
24 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
25 |
|
26 |
-
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
|
27 |
-
|
28 |
app = FastAPI()
|
29 |
|
30 |
class GenerateRequest(BaseModel):
|
31 |
model_name: str
|
32 |
-
input_text: str
|
33 |
task_type: str
|
34 |
temperature: float = 1.0
|
35 |
max_new_tokens: int = 200
|
@@ -42,19 +41,6 @@ class GenerateRequest(BaseModel):
|
|
42 |
chunk_delay: float = 0.0
|
43 |
stop_sequences: list[str] = []
|
44 |
|
45 |
-
@field_validator("model_name")
|
46 |
-
def model_name_cannot_be_empty(cls, v):
|
47 |
-
if not v:
|
48 |
-
raise ValueError("model_name cannot be empty.")
|
49 |
-
return v
|
50 |
-
|
51 |
-
@field_validator("task_type")
|
52 |
-
def task_type_must_be_valid(cls, v):
|
53 |
-
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
|
54 |
-
if v not in valid_types:
|
55 |
-
raise ValueError(f"task_type must be one of: {valid_types}")
|
56 |
-
return v
|
57 |
-
|
58 |
class S3ModelLoader:
|
59 |
def __init__(self, bucket_name, s3_client):
|
60 |
self.bucket_name = bucket_name
|
@@ -62,32 +48,29 @@ class S3ModelLoader:
|
|
62 |
|
63 |
def _get_s3_uri(self, model_name):
|
64 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
65 |
-
|
66 |
async def load_model_and_tokenizer(self, model_name):
|
|
|
|
|
|
|
67 |
s3_uri = self._get_s3_uri(model_name)
|
68 |
try:
|
69 |
-
|
70 |
-
|
71 |
-
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True)
|
72 |
|
73 |
-
if tokenizer.eos_token_id is
|
74 |
-
tokenizer.
|
75 |
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
tokenizer
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
model.save_pretrained(s3_uri)
|
87 |
-
tokenizer.save_pretrained(s3_uri)
|
88 |
-
return model, tokenizer
|
89 |
-
except Exception as e:
|
90 |
-
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
91 |
|
92 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
93 |
|
@@ -96,7 +79,6 @@ async def generate(request: GenerateRequest):
|
|
96 |
try:
|
97 |
model_name = request.model_name
|
98 |
input_text = request.input_text
|
99 |
-
task_type = request.task_type
|
100 |
temperature = request.temperature
|
101 |
max_new_tokens = request.max_new_tokens
|
102 |
stream = request.stream
|
@@ -108,7 +90,13 @@ async def generate(request: GenerateRequest):
|
|
108 |
chunk_delay = request.chunk_delay
|
109 |
stop_sequences = request.stop_sequences
|
110 |
|
111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
113 |
model.to(device)
|
114 |
|
@@ -239,4 +227,5 @@ async def generate_video(request: GenerateRequest):
|
|
239 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
240 |
|
241 |
if __name__ == "__main__":
|
|
|
242 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
2 |
import torch
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
+
from pydantic import BaseModel
|
6 |
from transformers import (
|
7 |
AutoConfig,
|
8 |
pipeline,
|
|
|
11 |
GenerationConfig,
|
12 |
StoppingCriteriaList
|
13 |
)
|
|
|
|
|
14 |
import asyncio
|
15 |
from io import BytesIO
|
|
|
16 |
|
17 |
+
# Diccionario global para almacenar los tokens
|
18 |
+
token_dict = {}
|
19 |
+
|
20 |
+
# Setup para acceder a modelos en Hugging Face o S3
|
21 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
22 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
23 |
AWS_REGION = os.getenv("AWS_REGION")
|
24 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
25 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
26 |
|
|
|
|
|
27 |
app = FastAPI()
|
28 |
|
29 |
class GenerateRequest(BaseModel):
|
30 |
model_name: str
|
31 |
+
input_text: str
|
32 |
task_type: str
|
33 |
temperature: float = 1.0
|
34 |
max_new_tokens: int = 200
|
|
|
41 |
chunk_delay: float = 0.0
|
42 |
stop_sequences: list[str] = []
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
class S3ModelLoader:
|
45 |
def __init__(self, bucket_name, s3_client):
|
46 |
self.bucket_name = bucket_name
|
|
|
48 |
|
49 |
def _get_s3_uri(self, model_name):
|
50 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
51 |
+
|
52 |
async def load_model_and_tokenizer(self, model_name):
|
53 |
+
if model_name in token_dict:
|
54 |
+
return token_dict[model_name]
|
55 |
+
|
56 |
s3_uri = self._get_s3_uri(model_name)
|
57 |
try:
|
58 |
+
model = AutoModelForCausalLM.from_pretrained(s3_uri, local_files_only=True)
|
59 |
+
tokenizer = AutoTokenizer.from_pretrained(s3_uri, local_files_only=True)
|
|
|
60 |
|
61 |
+
if tokenizer.eos_token_id is None:
|
62 |
+
tokenizer.eos_token_id = tokenizer.pad_token_id
|
63 |
|
64 |
+
token_dict[model_name] = {
|
65 |
+
"model": model,
|
66 |
+
"tokenizer": tokenizer,
|
67 |
+
"pad_token_id": tokenizer.pad_token_id,
|
68 |
+
"eos_token_id": tokenizer.eos_token_id
|
69 |
+
}
|
70 |
|
71 |
+
return token_dict[model_name]
|
72 |
+
except Exception as e:
|
73 |
+
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
76 |
|
|
|
79 |
try:
|
80 |
model_name = request.model_name
|
81 |
input_text = request.input_text
|
|
|
82 |
temperature = request.temperature
|
83 |
max_new_tokens = request.max_new_tokens
|
84 |
stream = request.stream
|
|
|
90 |
chunk_delay = request.chunk_delay
|
91 |
stop_sequences = request.stop_sequences
|
92 |
|
93 |
+
# Cargar modelo y tokenizer desde el S3
|
94 |
+
model_data = await model_loader.load_model_and_tokenizer(model_name)
|
95 |
+
model = model_data["model"]
|
96 |
+
tokenizer = model_data["tokenizer"]
|
97 |
+
pad_token_id = model_data["pad_token_id"]
|
98 |
+
eos_token_id = model_data["eos_token_id"]
|
99 |
+
|
100 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
101 |
model.to(device)
|
102 |
|
|
|
227 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
228 |
|
229 |
if __name__ == "__main__":
|
230 |
+
import uvicorn
|
231 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|