Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -10,26 +10,26 @@ from transformers import (
|
|
10 |
StoppingCriteriaList,
|
11 |
pipeline
|
12 |
)
|
13 |
-
import asyncio
|
14 |
from io import BytesIO
|
15 |
-
|
16 |
import boto3
|
|
|
17 |
from huggingface_hub import snapshot_download
|
18 |
|
19 |
-
#
|
20 |
-
token_dict = {}
|
21 |
-
|
22 |
-
# Configuraci贸n para acceso a modelos en Hugging Face o S3
|
23 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
24 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
25 |
AWS_REGION = os.getenv("AWS_REGION")
|
26 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
27 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
28 |
|
|
|
|
|
|
|
29 |
# Inicializaci贸n de la aplicaci贸n FastAPI
|
30 |
app = FastAPI()
|
31 |
|
32 |
-
# Modelo de
|
33 |
class GenerateRequest(BaseModel):
|
34 |
model_name: str
|
35 |
input_text: str
|
@@ -45,6 +45,7 @@ class GenerateRequest(BaseModel):
|
|
45 |
chunk_delay: float = 0.0
|
46 |
stop_sequences: list[str] = []
|
47 |
|
|
|
48 |
class S3ModelLoader:
|
49 |
def __init__(self, bucket_name, aws_access_key_id=None, aws_secret_access_key=None, aws_region=None):
|
50 |
self.bucket_name = bucket_name
|
@@ -64,16 +65,18 @@ class S3ModelLoader:
|
|
64 |
|
65 |
s3_uri = self._get_s3_uri(model_name)
|
66 |
try:
|
67 |
-
#
|
68 |
model_path = snapshot_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
|
69 |
-
|
|
|
70 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
71 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
72 |
|
|
|
73 |
if tokenizer.eos_token_id is None:
|
74 |
tokenizer.eos_token_id = tokenizer.pad_token_id
|
75 |
|
76 |
-
#
|
77 |
token_dict[model_name] = {
|
78 |
"model": model,
|
79 |
"tokenizer": tokenizer,
|
@@ -81,7 +84,7 @@ class S3ModelLoader:
|
|
81 |
"eos_token_id": tokenizer.eos_token_id
|
82 |
}
|
83 |
|
84 |
-
#
|
85 |
self.s3_client.upload_file(model_path, self.bucket_name, f'{model_name}/model')
|
86 |
self.s3_client.upload_file(f'{model_path}/tokenizer', self.bucket_name, f'{model_name}/tokenizer')
|
87 |
|
@@ -91,9 +94,10 @@ class S3ModelLoader:
|
|
91 |
except Exception as e:
|
92 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
93 |
|
|
|
94 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)
|
95 |
|
96 |
-
# Funci贸n
|
97 |
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048):
|
98 |
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
|
99 |
input_length = encoded_input["input_ids"].shape[1]
|
@@ -129,13 +133,13 @@ async def stream_text(model, tokenizer, input_text, generation_config, stop_sequ
|
|
129 |
for token_id in output:
|
130 |
token = tokenizer.decode(token_id, skip_special_tokens=True)
|
131 |
yield token
|
132 |
-
await asyncio.sleep(chunk_delay)
|
133 |
|
134 |
if stop_sequences and any(stop in output_text for stop in stop_sequences):
|
135 |
yield output_text
|
136 |
return
|
137 |
|
138 |
-
# Endpoint para
|
139 |
@app.post("/generate")
|
140 |
async def generate(request: GenerateRequest):
|
141 |
try:
|
@@ -152,7 +156,7 @@ async def generate(request: GenerateRequest):
|
|
152 |
chunk_delay = request.chunk_delay
|
153 |
stop_sequences = request.stop_sequences
|
154 |
|
155 |
-
# Cargar el modelo y
|
156 |
model_data = model_loader.load_model_and_tokenizer(model_name)
|
157 |
model = model_data["model"]
|
158 |
tokenizer = model_data["tokenizer"]
|
@@ -180,7 +184,7 @@ async def generate(request: GenerateRequest):
|
|
180 |
except Exception as e:
|
181 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
182 |
|
183 |
-
# Endpoint para
|
184 |
@app.post("/generate-image")
|
185 |
async def generate_image(request: GenerateRequest):
|
186 |
try:
|
@@ -199,7 +203,7 @@ async def generate_image(request: GenerateRequest):
|
|
199 |
except Exception as e:
|
200 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
201 |
|
202 |
-
# Endpoint para
|
203 |
@app.post("/generate-text-to-speech")
|
204 |
async def generate_text_to_speech(request: GenerateRequest):
|
205 |
try:
|
@@ -218,7 +222,7 @@ async def generate_text_to_speech(request: GenerateRequest):
|
|
218 |
except Exception as e:
|
219 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
220 |
|
221 |
-
# Endpoint para
|
222 |
@app.post("/generate-video")
|
223 |
async def generate_video(request: GenerateRequest):
|
224 |
try:
|
|
|
10 |
StoppingCriteriaList,
|
11 |
pipeline
|
12 |
)
|
|
|
13 |
from io import BytesIO
|
14 |
+
import asyncio
|
15 |
import boto3
|
16 |
+
from botocore.exceptions import NoCredentialsError
|
17 |
from huggingface_hub import snapshot_download
|
18 |
|
19 |
+
# Configuraci贸n global
|
|
|
|
|
|
|
20 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
21 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
22 |
AWS_REGION = os.getenv("AWS_REGION")
|
23 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
24 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
25 |
|
26 |
+
# Diccionario global de tokens y configuraciones
|
27 |
+
token_dict = {}
|
28 |
+
|
29 |
# Inicializaci贸n de la aplicaci贸n FastAPI
|
30 |
app = FastAPI()
|
31 |
|
32 |
+
# Modelo de solicitud
|
33 |
class GenerateRequest(BaseModel):
|
34 |
model_name: str
|
35 |
input_text: str
|
|
|
45 |
chunk_delay: float = 0.0
|
46 |
stop_sequences: list[str] = []
|
47 |
|
48 |
+
# Clase para cargar y gestionar los modelos desde S3
|
49 |
class S3ModelLoader:
|
50 |
def __init__(self, bucket_name, aws_access_key_id=None, aws_secret_access_key=None, aws_region=None):
|
51 |
self.bucket_name = bucket_name
|
|
|
65 |
|
66 |
s3_uri = self._get_s3_uri(model_name)
|
67 |
try:
|
68 |
+
# Descargar el modelo desde Hugging Face y guardarlo en S3 si no existe
|
69 |
model_path = snapshot_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
|
70 |
+
|
71 |
+
# Cargar el modelo y tokenizer
|
72 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
73 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
74 |
|
75 |
+
# Asignar EOS y PAD token si no est谩n definidos
|
76 |
if tokenizer.eos_token_id is None:
|
77 |
tokenizer.eos_token_id = tokenizer.pad_token_id
|
78 |
|
79 |
+
# Guardar el modelo y el tokenizer en el diccionario
|
80 |
token_dict[model_name] = {
|
81 |
"model": model,
|
82 |
"tokenizer": tokenizer,
|
|
|
84 |
"eos_token_id": tokenizer.eos_token_id
|
85 |
}
|
86 |
|
87 |
+
# Subir los archivos del modelo y tokenizer a S3 si no est谩n all铆
|
88 |
self.s3_client.upload_file(model_path, self.bucket_name, f'{model_name}/model')
|
89 |
self.s3_client.upload_file(f'{model_path}/tokenizer', self.bucket_name, f'{model_name}/tokenizer')
|
90 |
|
|
|
94 |
except Exception as e:
|
95 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
96 |
|
97 |
+
# Instanciaci贸n del cargador de modelos
|
98 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)
|
99 |
|
100 |
+
# Funci贸n de generaci贸n de texto con streaming
|
101 |
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048):
|
102 |
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
|
103 |
input_length = encoded_input["input_ids"].shape[1]
|
|
|
133 |
for token_id in output:
|
134 |
token = tokenizer.decode(token_id, skip_special_tokens=True)
|
135 |
yield token
|
136 |
+
await asyncio.sleep(chunk_delay)
|
137 |
|
138 |
if stop_sequences and any(stop in output_text for stop in stop_sequences):
|
139 |
yield output_text
|
140 |
return
|
141 |
|
142 |
+
# Endpoint para generar texto
|
143 |
@app.post("/generate")
|
144 |
async def generate(request: GenerateRequest):
|
145 |
try:
|
|
|
156 |
chunk_delay = request.chunk_delay
|
157 |
stop_sequences = request.stop_sequences
|
158 |
|
159 |
+
# Cargar el modelo y tokenizer desde S3 si no existe
|
160 |
model_data = model_loader.load_model_and_tokenizer(model_name)
|
161 |
model = model_data["model"]
|
162 |
tokenizer = model_data["tokenizer"]
|
|
|
184 |
except Exception as e:
|
185 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
186 |
|
187 |
+
# Endpoint para generar im谩genes
|
188 |
@app.post("/generate-image")
|
189 |
async def generate_image(request: GenerateRequest):
|
190 |
try:
|
|
|
203 |
except Exception as e:
|
204 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
205 |
|
206 |
+
# Endpoint para generar texto a voz
|
207 |
@app.post("/generate-text-to-speech")
|
208 |
async def generate_text_to_speech(request: GenerateRequest):
|
209 |
try:
|
|
|
222 |
except Exception as e:
|
223 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
224 |
|
225 |
+
# Endpoint para generar video
|
226 |
@app.post("/generate-video")
|
227 |
async def generate_video(request: GenerateRequest):
|
228 |
try:
|