Hjgugugjhuhjggg commited on
Commit
3e67bfd
verified
1 Parent(s): 059d70c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +37 -10
app.py CHANGED
@@ -5,15 +5,22 @@ import boto3
5
  from fastapi import FastAPI, HTTPException
6
  from fastapi.responses import JSONResponse
7
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
 
8
  import asyncio
9
 
10
- logging.basicConfig(level=logging.INFO)
11
  logger = logging.getLogger(__name__)
 
 
 
 
 
12
 
13
  AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
14
  AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
15
  AWS_REGION = os.getenv("AWS_REGION")
16
  S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
 
17
 
18
  MAX_TOKENS = 1024
19
 
@@ -81,7 +88,7 @@ class S3DirectStream:
81
  model_files = await self.get_model_file_parts(model_prefix)
82
 
83
  if not model_files:
84
- raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")
85
 
86
  config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
87
  config_data = config_stream.read()
@@ -107,7 +114,7 @@ class S3DirectStream:
107
  tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
108
  tokenizer_data = tokenizer_stream.read().decode("utf-8")
109
 
110
- tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}")
111
  return tokenizer
112
  except Exception as e:
113
  raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
@@ -131,6 +138,22 @@ class S3DirectStream:
131
  except self.s3_client.exceptions.ClientError:
132
  return False
133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
135
  tokens = tokenizer.encode(text)
136
  chunks = []
@@ -173,18 +196,22 @@ async def predict(model_request: dict):
173
 
174
  result = await asyncio.to_thread(nlp_pipeline, input_text)
175
 
176
- chunks = split_text_by_tokens(result, tokenizer)
177
-
178
- if len(chunks) > 1:
179
  full_result = ""
180
  for chunk in chunks:
181
  full_result += continue_generation(chunk, model, tokenizer)
182
- return JSONResponse(content={"result": full_result})
183
- else:
184
- return JSONResponse(content={"result": result})
 
 
 
 
185
 
186
  except Exception as e:
187
- raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}")
 
188
 
189
  if __name__ == "__main__":
190
  import uvicorn
 
5
  from fastapi import FastAPI, HTTPException
6
  from fastapi.responses import JSONResponse
7
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
8
+ from huggingface_hub import hf_hub_download
9
  import asyncio
10
 
11
+ # Configuraci贸n del logger
12
  logger = logging.getLogger(__name__)
13
+ logger.setLevel(logging.INFO)
14
+ console_handler = logging.StreamHandler()
15
+ formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
16
+ console_handler.setFormatter(formatter)
17
+ logger.addHandler(console_handler)
18
 
19
  AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
20
  AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
21
  AWS_REGION = os.getenv("AWS_REGION")
22
  S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
23
+ HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
24
 
25
  MAX_TOKENS = 1024
26
 
 
88
  model_files = await self.get_model_file_parts(model_prefix)
89
 
90
  if not model_files:
91
+ await self.download_and_upload_to_s3(model_prefix, model)
92
 
93
  config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
94
  config_data = config_stream.read()
 
114
  tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
115
  tokenizer_data = tokenizer_stream.read().decode("utf-8")
116
 
117
+ tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{profile}/{model}")
118
  return tokenizer
119
  except Exception as e:
120
  raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
 
138
  except self.s3_client.exceptions.ClientError:
139
  return False
140
 
141
+ async def download_and_upload_to_s3(self, model_prefix, model_name):
142
+ try:
143
+ config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN)
144
+ tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN)
145
+
146
+ if not await self.file_exists_in_s3(f"{model_prefix}/config.json"):
147
+ with open(config_file, "rb") as file:
148
+ self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/config.json", Body=file)
149
+
150
+ if not await self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
151
+ with open(tokenizer_file, "rb") as file:
152
+ self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/tokenizer.json", Body=file)
153
+
154
+ except Exception as e:
155
+ raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
156
+
157
  def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
158
  tokens = tokenizer.encode(text)
159
  chunks = []
 
196
 
197
  result = await asyncio.to_thread(nlp_pipeline, input_text)
198
 
199
+ if len(result) > MAX_TOKENS:
200
+ chunks = split_text_by_tokens(result, tokenizer)
 
201
  full_result = ""
202
  for chunk in chunks:
203
  full_result += continue_generation(chunk, model, tokenizer)
204
+ return {"result": full_result}
205
+
206
+ return {"result": result}
207
+
208
+ except HTTPException as e:
209
+ logger.error(f"Error al realizar la predicci贸n: {str(e.detail)}")
210
+ return JSONResponse(status_code=e.status_code, content={"detail": str(e.detail)})
211
 
212
  except Exception as e:
213
+ logger.error(f"Error inesperado: {str(e)}")
214
+ return JSONResponse(status_code=500, content={"detail": "Error inesperado. Intenta m谩s tarde."})
215
 
216
  if __name__ == "__main__":
217
  import uvicorn