Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -18,6 +18,7 @@ import json
|
|
18 |
from huggingface_hub import login
|
19 |
import base64
|
20 |
from botocore.exceptions import NoCredentialsError
|
|
|
21 |
|
22 |
|
23 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
@@ -93,13 +94,20 @@ class S3ModelLoader:
|
|
93 |
tokenizer = AutoTokenizer.from_pretrained(
|
94 |
s3_uri, config=config, local_files_only=False
|
95 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
or tokenizer.eos_token_id
|
101 |
-
model_cache[model_name] = (model, tokenizer)
|
102 |
-
return model, tokenizer
|
103 |
except (EnvironmentError, NoCredentialsError):
|
104 |
try:
|
105 |
config = AutoConfig.from_pretrained(
|
@@ -112,12 +120,16 @@ class S3ModelLoader:
|
|
112 |
model = AutoModelForCausalLM.from_pretrained(
|
113 |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
114 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
tokenizer.pad_token_id = config.pad_token_id \
|
120 |
-
or tokenizer.eos_token_id
|
121 |
|
122 |
|
123 |
model.save_pretrained(s3_uri)
|
@@ -135,8 +147,20 @@ class S3ModelLoader:
|
|
135 |
tokenizer = AutoTokenizer.from_pretrained(
|
136 |
s3_uri, config=config, local_files_only=False
|
137 |
)
|
138 |
-
|
139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
except Exception as e:
|
141 |
raise HTTPException(
|
142 |
status_code=500, detail=f"Error loading model: {e}"
|
@@ -160,7 +184,7 @@ async def generate(request: GenerateRequest):
|
|
160 |
do_sample = request.do_sample
|
161 |
stop_sequences = request.stop_sequences
|
162 |
|
163 |
-
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
|
164 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
165 |
model.to(device)
|
166 |
|
@@ -178,7 +202,7 @@ async def generate(request: GenerateRequest):
|
|
178 |
return StreamingResponse(
|
179 |
stream_text(model, tokenizer, input_text,
|
180 |
generation_config, stop_sequences,
|
181 |
-
device),
|
182 |
media_type="text/plain"
|
183 |
)
|
184 |
else:
|
@@ -192,22 +216,28 @@ async def generate(request: GenerateRequest):
|
|
192 |
|
193 |
async def stream_text(model, tokenizer, input_text,
|
194 |
generation_config, stop_sequences,
|
195 |
-
device):
|
196 |
|
197 |
encoded_input = tokenizer(
|
198 |
input_text, return_tensors="pt",
|
199 |
truncation=True
|
200 |
).to(device)
|
201 |
-
|
202 |
-
|
|
|
203 |
def find_stop(output_text, stop_sequences):
|
204 |
for seq in stop_sequences:
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
|
|
|
|
|
|
|
|
209 |
return -1
|
210 |
|
|
|
211 |
output_text = ""
|
212 |
while True:
|
213 |
outputs = model.generate(
|
@@ -221,6 +251,7 @@ async def stream_text(model, tokenizer, input_text,
|
|
221 |
num_return_sequences=generation_config.num_return_sequences,
|
222 |
output_scores=True,
|
223 |
return_dict_in_generate=True,
|
|
|
224 |
)
|
225 |
|
226 |
new_text = tokenizer.decode(
|
@@ -251,7 +282,8 @@ async def stream_text(model, tokenizer, input_text,
|
|
251 |
|
252 |
encoded_input = tokenizer(
|
253 |
output_text, return_tensors="pt",
|
254 |
-
truncation=True
|
|
|
255 |
).to(device)
|
256 |
output_text = ""
|
257 |
|
|
|
18 |
from huggingface_hub import login
|
19 |
import base64
|
20 |
from botocore.exceptions import NoCredentialsError
|
21 |
+
import re
|
22 |
|
23 |
|
24 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
|
|
94 |
tokenizer = AutoTokenizer.from_pretrained(
|
95 |
s3_uri, config=config, local_files_only=False
|
96 |
)
|
97 |
+
|
98 |
+
eos_token_id = tokenizer.eos_token_id
|
99 |
+
pad_token_id = tokenizer.pad_token_id
|
100 |
+
eos_token = tokenizer.eos_token
|
101 |
+
pad_token = tokenizer.pad_token
|
102 |
+
padding = tokenizer.padding_side
|
103 |
+
|
104 |
+
if eos_token_id is not None and pad_token_id is None:
|
105 |
+
pad_token_id = config.pad_token_id or eos_token_id
|
106 |
+
tokenizer.pad_token_id = pad_token_id
|
107 |
|
108 |
+
model_cache[model_name] = (model, tokenizer,eos_token_id,
|
109 |
+
pad_token_id,eos_token,pad_token,padding)
|
110 |
+
return model, tokenizer,eos_token_id,pad_token_id,eos_token,pad_token,padding
|
|
|
|
|
|
|
111 |
except (EnvironmentError, NoCredentialsError):
|
112 |
try:
|
113 |
config = AutoConfig.from_pretrained(
|
|
|
120 |
model = AutoModelForCausalLM.from_pretrained(
|
121 |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
122 |
)
|
123 |
+
|
124 |
+
eos_token_id = tokenizer.eos_token_id
|
125 |
+
pad_token_id = tokenizer.pad_token_id
|
126 |
+
eos_token = tokenizer.eos_token
|
127 |
+
pad_token = tokenizer.pad_token
|
128 |
+
padding = tokenizer.padding_side
|
129 |
|
130 |
+
if eos_token_id is not None and pad_token_id is None:
|
131 |
+
pad_token_id = config.pad_token_id or eos_token_id
|
132 |
+
tokenizer.pad_token_id = pad_token_id
|
|
|
|
|
133 |
|
134 |
|
135 |
model.save_pretrained(s3_uri)
|
|
|
147 |
tokenizer = AutoTokenizer.from_pretrained(
|
148 |
s3_uri, config=config, local_files_only=False
|
149 |
)
|
150 |
+
|
151 |
+
eos_token_id = tokenizer.eos_token_id
|
152 |
+
pad_token_id = tokenizer.pad_token_id
|
153 |
+
eos_token = tokenizer.eos_token
|
154 |
+
pad_token = tokenizer.pad_token
|
155 |
+
padding = tokenizer.padding_side
|
156 |
+
|
157 |
+
if eos_token_id is not None and pad_token_id is None:
|
158 |
+
pad_token_id = config.pad_token_id or eos_token_id
|
159 |
+
tokenizer.pad_token_id = pad_token_id
|
160 |
+
|
161 |
+
model_cache[model_name] = (model, tokenizer,eos_token_id,
|
162 |
+
pad_token_id,eos_token,pad_token,padding)
|
163 |
+
return model, tokenizer,eos_token_id,pad_token_id,eos_token,pad_token,padding
|
164 |
except Exception as e:
|
165 |
raise HTTPException(
|
166 |
status_code=500, detail=f"Error loading model: {e}"
|
|
|
184 |
do_sample = request.do_sample
|
185 |
stop_sequences = request.stop_sequences
|
186 |
|
187 |
+
model, tokenizer, eos_token_id, pad_token_id, eos_token, pad_token, padding = await model_loader.load_model_and_tokenizer(model_name)
|
188 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
189 |
model.to(device)
|
190 |
|
|
|
202 |
return StreamingResponse(
|
203 |
stream_text(model, tokenizer, input_text,
|
204 |
generation_config, stop_sequences,
|
205 |
+
device,pad_token_id),
|
206 |
media_type="text/plain"
|
207 |
)
|
208 |
else:
|
|
|
216 |
|
217 |
async def stream_text(model, tokenizer, input_text,
|
218 |
generation_config, stop_sequences,
|
219 |
+
device,pad_token_id):
|
220 |
|
221 |
encoded_input = tokenizer(
|
222 |
input_text, return_tensors="pt",
|
223 |
truncation=True
|
224 |
).to(device)
|
225 |
+
|
226 |
+
stop_regex = re.compile(r'[\.\?\!\n]+')
|
227 |
+
|
228 |
def find_stop(output_text, stop_sequences):
|
229 |
for seq in stop_sequences:
|
230 |
+
if seq in output_text:
|
231 |
+
last_index = output_text.rfind(seq)
|
232 |
+
return last_index + len(seq)
|
233 |
+
|
234 |
+
match = stop_regex.search(output_text)
|
235 |
+
if match:
|
236 |
+
return match.end()
|
237 |
+
|
238 |
return -1
|
239 |
|
240 |
+
|
241 |
output_text = ""
|
242 |
while True:
|
243 |
outputs = model.generate(
|
|
|
251 |
num_return_sequences=generation_config.num_return_sequences,
|
252 |
output_scores=True,
|
253 |
return_dict_in_generate=True,
|
254 |
+
pad_token_id=pad_token_id
|
255 |
)
|
256 |
|
257 |
new_text = tokenizer.decode(
|
|
|
282 |
|
283 |
encoded_input = tokenizer(
|
284 |
output_text, return_tensors="pt",
|
285 |
+
truncation=True,
|
286 |
+
padding = "max_length" if pad_token_id is not None else False
|
287 |
).to(device)
|
288 |
output_text = ""
|
289 |
|