Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import os
|
2 |
import json
|
|
|
|
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
-
from
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
-
import boto3
|
7 |
-
import logging
|
8 |
from huggingface_hub import hf_hub_download
|
|
|
9 |
|
|
|
10 |
logger = logging.getLogger(__name__)
|
11 |
logger.setLevel(logging.INFO)
|
12 |
console_handler = logging.StreamHandler()
|
@@ -20,6 +22,8 @@ AWS_REGION = os.getenv("AWS_REGION")
|
|
20 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
21 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
22 |
|
|
|
|
|
23 |
s3_client = boto3.client(
|
24 |
's3',
|
25 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
@@ -29,10 +33,16 @@ s3_client = boto3.client(
|
|
29 |
|
30 |
app = FastAPI()
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
class S3DirectStream:
|
38 |
def __init__(self, bucket_name):
|
@@ -44,130 +54,165 @@ class S3DirectStream:
|
|
44 |
)
|
45 |
self.bucket_name = bucket_name
|
46 |
|
47 |
-
async def
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
# Descarga de los archivos desde Hugging Face
|
52 |
-
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN)
|
53 |
-
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN)
|
54 |
-
|
55 |
-
# Verifica si ya existen en S3
|
56 |
-
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
|
57 |
-
with open(config_file, "rb") as file:
|
58 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
|
59 |
-
|
60 |
-
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
61 |
-
with open(tokenizer_file, "rb") as file:
|
62 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
|
63 |
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
except Exception as e:
|
65 |
-
|
66 |
-
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo: {str(e)}")
|
67 |
|
68 |
-
async def
|
|
|
|
|
|
|
|
|
69 |
try:
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
return
|
|
|
|
|
74 |
|
75 |
async def load_model_from_s3(self, model_name):
|
76 |
try:
|
77 |
-
|
78 |
-
|
|
|
|
|
79 |
|
80 |
if not model_files:
|
81 |
-
await self.download_and_upload_to_s3(
|
|
|
|
|
|
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
if isinstance(config_data, bytes):
|
86 |
-
config_data = config_data.decode("utf-8")
|
87 |
|
88 |
-
|
|
|
89 |
|
90 |
-
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{
|
91 |
return model
|
92 |
|
93 |
except HTTPException as e:
|
94 |
raise e
|
95 |
except Exception as e:
|
96 |
-
|
97 |
-
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {str(e)}")
|
98 |
|
99 |
async def load_tokenizer_from_s3(self, model_name):
|
100 |
try:
|
101 |
-
|
102 |
-
tokenizer_data = await self.stream_from_s3(f"{model_name}/tokenizer.json")
|
103 |
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{
|
108 |
return tokenizer
|
109 |
except Exception as e:
|
110 |
-
|
111 |
-
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {str(e)}")
|
112 |
|
113 |
-
async def
|
114 |
try:
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
119 |
except Exception as e:
|
120 |
-
raise HTTPException(status_code=500, detail=f"Error al
|
121 |
|
122 |
-
async def
|
123 |
try:
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
return
|
128 |
-
except Exception as e:
|
129 |
-
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {str(e)}")
|
130 |
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
try:
|
134 |
-
model_name =
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
|
143 |
-
|
144 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
145 |
-
result = generator(input_text, max_length=1024, num_return_sequences=1)
|
146 |
-
return {"result": result[0]["generated_text"]}
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
image = generator(input_text)
|
151 |
-
return {"result": image}
|
152 |
|
153 |
-
|
154 |
-
|
155 |
-
audio = generator(input_text)
|
156 |
-
return {"result": audio}
|
157 |
|
158 |
-
|
159 |
-
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=0)
|
160 |
-
video = generator(input_text)
|
161 |
-
return {"result": video}
|
162 |
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
except HTTPException as e:
|
167 |
-
|
|
|
|
|
168 |
except Exception as e:
|
169 |
-
|
|
|
170 |
|
171 |
if __name__ == "__main__":
|
172 |
import uvicorn
|
173 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
import json
|
3 |
+
import logging
|
4 |
+
import boto3
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
+
from fastapi.responses import JSONResponse
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
+
import asyncio
|
10 |
|
11 |
+
# Configuraci贸n del logger
|
12 |
logger = logging.getLogger(__name__)
|
13 |
logger.setLevel(logging.INFO)
|
14 |
console_handler = logging.StreamHandler()
|
|
|
22 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
23 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
24 |
|
25 |
+
MAX_TOKENS = 1024
|
26 |
+
|
27 |
s3_client = boto3.client(
|
28 |
's3',
|
29 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
|
|
33 |
|
34 |
app = FastAPI()
|
35 |
|
36 |
+
PIPELINE_MAP = {
|
37 |
+
"text-generation": "text-generation",
|
38 |
+
"sentiment-analysis": "sentiment-analysis",
|
39 |
+
"translation": "translation",
|
40 |
+
"fill-mask": "fill-mask",
|
41 |
+
"question-answering": "question-answering",
|
42 |
+
"text-to-speech": "text-to-speech",
|
43 |
+
"text-to-video": "text-to-video",
|
44 |
+
"text-to-image": "text-to-image"
|
45 |
+
}
|
46 |
|
47 |
class S3DirectStream:
|
48 |
def __init__(self, bucket_name):
|
|
|
54 |
)
|
55 |
self.bucket_name = bucket_name
|
56 |
|
57 |
+
async def stream_from_s3(self, key):
|
58 |
+
loop = asyncio.get_event_loop()
|
59 |
+
return await loop.run_in_executor(None, self._stream_from_s3, key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
def _stream_from_s3(self, key):
|
62 |
+
try:
|
63 |
+
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
64 |
+
return response['Body']
|
65 |
+
except self.s3_client.exceptions.NoSuchKey:
|
66 |
+
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
|
67 |
except Exception as e:
|
68 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
|
|
|
69 |
|
70 |
+
async def get_model_file_parts(self, model_name):
|
71 |
+
loop = asyncio.get_event_loop()
|
72 |
+
return await loop.run_in_executor(None, self._get_model_file_parts, model_name)
|
73 |
+
|
74 |
+
def _get_model_file_parts(self, model_name):
|
75 |
try:
|
76 |
+
model_prefix = model_name.lower()
|
77 |
+
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix)
|
78 |
+
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']]
|
79 |
+
return model_files
|
80 |
+
except Exception as e:
|
81 |
+
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
|
82 |
|
83 |
async def load_model_from_s3(self, model_name):
|
84 |
try:
|
85 |
+
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
|
86 |
+
|
87 |
+
model_prefix = f"{profile}/{model}".lower()
|
88 |
+
model_files = await self.get_model_file_parts(model_prefix)
|
89 |
|
90 |
if not model_files:
|
91 |
+
await self.download_and_upload_to_s3(model_prefix, model)
|
92 |
+
|
93 |
+
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
|
94 |
+
config_data = config_stream.read()
|
95 |
|
96 |
+
if not config_data:
|
97 |
+
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o o no se pudo leer.")
|
|
|
|
|
98 |
|
99 |
+
config_text = config_data.decode("utf-8")
|
100 |
+
config_json = json.loads(config_text)
|
101 |
|
102 |
+
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False)
|
103 |
return model
|
104 |
|
105 |
except HTTPException as e:
|
106 |
raise e
|
107 |
except Exception as e:
|
108 |
+
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")
|
|
|
109 |
|
110 |
async def load_tokenizer_from_s3(self, model_name):
|
111 |
try:
|
112 |
+
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
|
|
|
113 |
|
114 |
+
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
|
115 |
+
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
116 |
+
|
117 |
+
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{profile}/{model}")
|
118 |
return tokenizer
|
119 |
except Exception as e:
|
120 |
+
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
|
|
121 |
|
122 |
+
async def create_s3_folders(self, s3_key):
|
123 |
try:
|
124 |
+
folder_keys = s3_key.split('/')
|
125 |
+
for i in range(1, len(folder_keys)):
|
126 |
+
folder_key = '/'.join(folder_keys[:i]) + '/'
|
127 |
+
if not await self.file_exists_in_s3(folder_key):
|
128 |
+
logger.info(f"Creando carpeta en S3: {folder_key}")
|
129 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
|
130 |
+
|
131 |
except Exception as e:
|
132 |
+
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")
|
133 |
|
134 |
+
async def file_exists_in_s3(self, s3_key):
|
135 |
try:
|
136 |
+
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
|
137 |
+
return True
|
138 |
+
except self.s3_client.exceptions.ClientError:
|
139 |
+
return False
|
|
|
|
|
140 |
|
141 |
+
async def download_and_upload_to_s3(self, model_prefix, model_name):
|
142 |
+
try:
|
143 |
+
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN)
|
144 |
+
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN)
|
145 |
+
|
146 |
+
if not await self.file_exists_in_s3(f"{model_prefix}/config.json"):
|
147 |
+
with open(config_file, "rb") as file:
|
148 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/config.json", Body=file)
|
149 |
+
|
150 |
+
if not await self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
|
151 |
+
with open(tokenizer_file, "rb") as file:
|
152 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/tokenizer.json", Body=file)
|
153 |
+
|
154 |
+
except Exception as e:
|
155 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
|
156 |
+
|
157 |
+
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
158 |
+
tokens = tokenizer.encode(text)
|
159 |
+
chunks = []
|
160 |
+
for i in range(0, len(tokens), max_tokens):
|
161 |
+
chunk = tokens[i:i+max_tokens]
|
162 |
+
chunks.append(tokenizer.decode(chunk))
|
163 |
+
return chunks
|
164 |
+
|
165 |
+
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
|
166 |
+
generated_text = ""
|
167 |
+
while len(input_text) > 0:
|
168 |
+
tokens = tokenizer.encode(input_text)
|
169 |
+
input_text = tokenizer.decode(tokens[:max_tokens])
|
170 |
+
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids)
|
171 |
+
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
|
172 |
+
input_text = input_text[len(input_text):]
|
173 |
+
return generated_text
|
174 |
+
|
175 |
+
@app.post("/predict/")
|
176 |
+
async def predict(model_request: dict):
|
177 |
try:
|
178 |
+
model_name = model_request.get("model_name")
|
179 |
+
task = model_request.get("pipeline_task")
|
180 |
+
input_text = model_request.get("input_text")
|
181 |
+
|
182 |
+
if not model_name or not task or not input_text:
|
183 |
+
raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.")
|
184 |
+
|
185 |
+
streamer = S3DirectStream(S3_BUCKET_NAME)
|
186 |
|
187 |
+
await streamer.create_s3_folders(model_name)
|
|
|
|
|
|
|
188 |
|
189 |
+
model = await streamer.load_model_from_s3(model_name)
|
190 |
+
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
|
|
|
|
|
191 |
|
192 |
+
if task not in PIPELINE_MAP:
|
193 |
+
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
|
|
|
|
|
194 |
|
195 |
+
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)
|
|
|
|
|
|
|
196 |
|
197 |
+
result = await asyncio.to_thread(nlp_pipeline, input_text)
|
198 |
+
|
199 |
+
if len(result) > MAX_TOKENS:
|
200 |
+
chunks = split_text_by_tokens(result, tokenizer)
|
201 |
+
full_result = ""
|
202 |
+
for chunk in chunks:
|
203 |
+
full_result += continue_generation(chunk, model, tokenizer)
|
204 |
+
return {"result": full_result}
|
205 |
+
|
206 |
+
return {"result": result}
|
207 |
|
208 |
except HTTPException as e:
|
209 |
+
logger.error(f"Error al realizar la predicci贸n: {str(e.detail)}")
|
210 |
+
return JSONResponse(status_code=e.status_code, content={"detail": str(e.detail)})
|
211 |
+
|
212 |
except Exception as e:
|
213 |
+
logger.error(f"Error inesperado: {str(e)}")
|
214 |
+
return JSONResponse(status_code=500, content={"detail": "Error inesperado. Intenta m谩s tarde."})
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
import uvicorn
|
218 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|