Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,8 +5,8 @@ import boto3
|
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from fastapi.responses import JSONResponse
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
8 |
-
|
9 |
-
|
10 |
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
@@ -15,7 +15,8 @@ AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
|
15 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
16 |
AWS_REGION = os.getenv("AWS_REGION")
|
17 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
18 |
-
|
|
|
19 |
|
20 |
s3_client = boto3.client(
|
21 |
's3',
|
@@ -47,7 +48,11 @@ class S3DirectStream:
|
|
47 |
)
|
48 |
self.bucket_name = bucket_name
|
49 |
|
50 |
-
def stream_from_s3(self, key):
|
|
|
|
|
|
|
|
|
51 |
try:
|
52 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
53 |
return response['Body']
|
@@ -56,7 +61,11 @@ class S3DirectStream:
|
|
56 |
except Exception as e:
|
57 |
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
|
58 |
|
59 |
-
def get_model_file_parts(self, model_name):
|
|
|
|
|
|
|
|
|
60 |
try:
|
61 |
model_prefix = model_name.lower()
|
62 |
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix)
|
@@ -65,21 +74,17 @@ class S3DirectStream:
|
|
65 |
except Exception as e:
|
66 |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
|
67 |
|
68 |
-
def load_model_from_s3(self, model_name):
|
69 |
try:
|
70 |
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
|
71 |
|
72 |
model_prefix = f"{profile}/{model}".lower()
|
73 |
-
model_files = self.get_model_file_parts(model_prefix)
|
74 |
-
|
75 |
-
if not model_files:
|
76 |
-
self.download_and_upload_from_huggingface(model_name)
|
77 |
-
model_files = self.get_model_file_parts(model_prefix)
|
78 |
|
79 |
if not model_files:
|
80 |
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")
|
81 |
|
82 |
-
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
|
83 |
config_data = config_stream.read()
|
84 |
|
85 |
if not config_data:
|
@@ -94,18 +99,13 @@ class S3DirectStream:
|
|
94 |
except HTTPException as e:
|
95 |
raise e
|
96 |
except Exception as e:
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
return model
|
101 |
-
except Exception as hf_error:
|
102 |
-
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde Hugging Face: {hf_error}")
|
103 |
-
|
104 |
-
def load_tokenizer_from_s3(self, model_name):
|
105 |
try:
|
106 |
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
|
107 |
|
108 |
-
tokenizer_stream = self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
|
109 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
110 |
|
111 |
tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}")
|
@@ -113,46 +113,42 @@ class S3DirectStream:
|
|
113 |
except Exception as e:
|
114 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
115 |
|
116 |
-
def
|
117 |
-
try:
|
118 |
-
files_to_download = hf_hub_download(repo_id=model_name, use_auth_token=HUGGINGFACE_TOKEN, local_dir=model_name)
|
119 |
-
|
120 |
-
for file in tqdm(files_to_download, desc="Subiendo archivos a S3"):
|
121 |
-
file_name = os.path.basename(file)
|
122 |
-
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
|
123 |
-
s3_key = f"{profile}/{model}/{file_name}"
|
124 |
-
if not self.file_exists_in_s3(s3_key):
|
125 |
-
self.upload_file_to_s3(file, s3_key)
|
126 |
-
|
127 |
-
except Exception as e:
|
128 |
-
raise HTTPException(status_code=500, detail=f"Error al descargar y subir modelo desde Hugging Face: {e}")
|
129 |
-
|
130 |
-
def upload_file_to_s3(self, file_path, s3_key):
|
131 |
-
try:
|
132 |
-
self.create_s3_folders(s3_key)
|
133 |
-
s3_client.put_object(Bucket=self.bucket_name, Key=s3_key, Body=open(file_path, 'rb'))
|
134 |
-
os.remove(file_path)
|
135 |
-
except Exception as e:
|
136 |
-
raise HTTPException(status_code=500, detail=f"Error al subir archivo a S3: {e}")
|
137 |
-
|
138 |
-
def create_s3_folders(self, s3_key):
|
139 |
try:
|
140 |
folder_keys = s3_key.split('/')
|
141 |
for i in range(1, len(folder_keys)):
|
142 |
folder_key = '/'.join(folder_keys[:i]) + '/'
|
143 |
-
if not self.file_exists_in_s3(folder_key):
|
144 |
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
|
145 |
|
146 |
except Exception as e:
|
147 |
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")
|
148 |
|
149 |
-
def file_exists_in_s3(self, s3_key):
|
150 |
try:
|
151 |
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
|
152 |
return True
|
153 |
except self.s3_client.exceptions.ClientError:
|
154 |
return False
|
155 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
@app.post("/predict/")
|
157 |
async def predict(model_request: dict):
|
158 |
try:
|
@@ -164,18 +160,23 @@ async def predict(model_request: dict):
|
|
164 |
raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.")
|
165 |
|
166 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
167 |
-
model = streamer.load_model_from_s3(model_name)
|
168 |
-
tokenizer = streamer.load_tokenizer_from_s3(model_name)
|
169 |
|
170 |
if task not in PIPELINE_MAP:
|
171 |
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
|
172 |
|
173 |
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)
|
174 |
|
175 |
-
result = nlp_pipeline
|
|
|
|
|
176 |
|
177 |
-
if
|
178 |
-
|
|
|
|
|
|
|
179 |
else:
|
180 |
return JSONResponse(content={"result": result})
|
181 |
|
@@ -184,4 +185,4 @@ async def predict(model_request: dict):
|
|
184 |
|
185 |
if __name__ == "__main__":
|
186 |
import uvicorn
|
187 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
|
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from fastapi.responses import JSONResponse
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
8 |
+
import asyncio
|
9 |
+
import concurrent.futures
|
10 |
|
11 |
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
|
|
15 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
16 |
AWS_REGION = os.getenv("AWS_REGION")
|
17 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
18 |
+
|
19 |
+
MAX_TOKENS = 1024 # Limite de tokens por fragmento
|
20 |
|
21 |
s3_client = boto3.client(
|
22 |
's3',
|
|
|
48 |
)
|
49 |
self.bucket_name = bucket_name
|
50 |
|
51 |
+
async def stream_from_s3(self, key):
|
52 |
+
loop = asyncio.get_event_loop()
|
53 |
+
return await loop.run_in_executor(None, self._stream_from_s3, key)
|
54 |
+
|
55 |
+
def _stream_from_s3(self, key):
|
56 |
try:
|
57 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
58 |
return response['Body']
|
|
|
61 |
except Exception as e:
|
62 |
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
|
63 |
|
64 |
+
async def get_model_file_parts(self, model_name):
|
65 |
+
loop = asyncio.get_event_loop()
|
66 |
+
return await loop.run_in_executor(None, self._get_model_file_parts, model_name)
|
67 |
+
|
68 |
+
def _get_model_file_parts(self, model_name):
|
69 |
try:
|
70 |
model_prefix = model_name.lower()
|
71 |
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix)
|
|
|
74 |
except Exception as e:
|
75 |
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
|
76 |
|
77 |
+
async def load_model_from_s3(self, model_name):
|
78 |
try:
|
79 |
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
|
80 |
|
81 |
model_prefix = f"{profile}/{model}".lower()
|
82 |
+
model_files = await self.get_model_file_parts(model_prefix)
|
|
|
|
|
|
|
|
|
83 |
|
84 |
if not model_files:
|
85 |
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")
|
86 |
|
87 |
+
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
|
88 |
config_data = config_stream.read()
|
89 |
|
90 |
if not config_data:
|
|
|
99 |
except HTTPException as e:
|
100 |
raise e
|
101 |
except Exception as e:
|
102 |
+
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")
|
103 |
+
|
104 |
+
async def load_tokenizer_from_s3(self, model_name):
|
|
|
|
|
|
|
|
|
|
|
105 |
try:
|
106 |
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
|
107 |
|
108 |
+
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
|
109 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
110 |
|
111 |
tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}")
|
|
|
113 |
except Exception as e:
|
114 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
115 |
|
116 |
+
async def create_s3_folders(self, s3_key):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
try:
|
118 |
folder_keys = s3_key.split('/')
|
119 |
for i in range(1, len(folder_keys)):
|
120 |
folder_key = '/'.join(folder_keys[:i]) + '/'
|
121 |
+
if not await self.file_exists_in_s3(folder_key):
|
122 |
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
|
123 |
|
124 |
except Exception as e:
|
125 |
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")
|
126 |
|
127 |
+
async def file_exists_in_s3(self, s3_key):
|
128 |
try:
|
129 |
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
|
130 |
return True
|
131 |
except self.s3_client.exceptions.ClientError:
|
132 |
return False
|
133 |
|
134 |
+
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
135 |
+
tokens = tokenizer.encode(text)
|
136 |
+
chunks = []
|
137 |
+
for i in range(0, len(tokens), max_tokens):
|
138 |
+
chunk = tokens[i:i+max_tokens]
|
139 |
+
chunks.append(tokenizer.decode(chunk))
|
140 |
+
return chunks
|
141 |
+
|
142 |
+
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
|
143 |
+
generated_text = ""
|
144 |
+
while len(input_text) > 0:
|
145 |
+
tokens = tokenizer.encode(input_text)
|
146 |
+
input_text = tokenizer.decode(tokens[:max_tokens])
|
147 |
+
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids)
|
148 |
+
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
|
149 |
+
input_text = input_text[len(input_text):] # Si la entrada se agot贸, ya no hay m谩s que procesar
|
150 |
+
return generated_text
|
151 |
+
|
152 |
@app.post("/predict/")
|
153 |
async def predict(model_request: dict):
|
154 |
try:
|
|
|
160 |
raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.")
|
161 |
|
162 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
163 |
+
model = await streamer.load_model_from_s3(model_name)
|
164 |
+
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
|
165 |
|
166 |
if task not in PIPELINE_MAP:
|
167 |
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
|
168 |
|
169 |
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)
|
170 |
|
171 |
+
result = await asyncio.to_thread(nlp_pipeline, input_text)
|
172 |
+
|
173 |
+
chunks = split_text_by_tokens(result, tokenizer)
|
174 |
|
175 |
+
if len(chunks) > 1:
|
176 |
+
full_result = ""
|
177 |
+
for chunk in chunks:
|
178 |
+
full_result += continue_generation(chunk, model, tokenizer)
|
179 |
+
return JSONResponse(content={"result": full_result})
|
180 |
else:
|
181 |
return JSONResponse(content={"result": result})
|
182 |
|
|
|
185 |
|
186 |
if __name__ == "__main__":
|
187 |
import uvicorn
|
188 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|