Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -11,6 +11,9 @@ import time
|
|
11 |
import asyncio
|
12 |
from fastapi.responses import StreamingResponse, Response
|
13 |
import torch
|
|
|
|
|
|
|
14 |
|
15 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")
|
16 |
|
@@ -64,7 +67,6 @@ class S3ModelLoader:
|
|
64 |
model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"lilmeaty_garca/{model_name}")
|
65 |
if "Contents" not in model_files:
|
66 |
raise FileNotFoundError(f"Model files not found in S3 for {model_name}")
|
67 |
-
|
68 |
s3_model_path = f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
|
69 |
logging.info(f"Model {model_name} found on S3 at {s3_model_path}")
|
70 |
return s3_model_path
|
@@ -72,25 +74,14 @@ class S3ModelLoader:
|
|
72 |
logging.error(f"Error downloading from S3: {e}")
|
73 |
raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}")
|
74 |
|
75 |
-
async def load_model_and_tokenizer(self, model_name):
|
76 |
-
try:
|
77 |
-
s3_model_path = await asyncio.to_thread(self._download_from_s3, model_name)
|
78 |
-
# Load from S3 directly (no local storage)
|
79 |
-
config = AutoConfig.from_pretrained(s3_model_path)
|
80 |
-
tokenizer = AutoTokenizer.from_pretrained(s3_model_path, config=config)
|
81 |
-
model = AutoModelForCausalLM.from_pretrained(s3_model_path, config=config)
|
82 |
-
|
83 |
-
logging.info(f"Model {model_name} loaded successfully from S3.")
|
84 |
-
return model, tokenizer
|
85 |
-
except Exception as e:
|
86 |
-
logging.exception(f"Error loading model: {e}")
|
87 |
-
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
88 |
-
|
89 |
def download_model_from_huggingface(self, model_name):
|
90 |
try:
|
91 |
logging.info(f"Downloading model {model_name} from Hugging Face...")
|
92 |
-
model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN
|
93 |
-
|
|
|
|
|
|
|
94 |
logging.info(f"Model {model_name} saved to S3 successfully.")
|
95 |
except Exception as e:
|
96 |
logging.error(f"Error downloading model {model_name} from Hugging Face: {e}")
|
@@ -102,7 +93,6 @@ class S3ModelLoader:
|
|
102 |
if response.status_code != 200:
|
103 |
logging.error("Error getting Hugging Face model list.")
|
104 |
raise HTTPException(status_code=500, detail="Error getting model list.")
|
105 |
-
|
106 |
models = response.json()
|
107 |
for model in models:
|
108 |
model_name = model["id"]
|
@@ -118,7 +108,6 @@ class S3ModelLoader:
|
|
118 |
async def startup_event():
|
119 |
model_loader.run_in_background()
|
120 |
|
121 |
-
# Initialize S3 client with boto3
|
122 |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
|
123 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
124 |
|
@@ -204,6 +193,21 @@ async def generate(request: Request, body: GenerateRequest):
|
|
204 |
logging.error(f"Error processing request: {str(e)}")
|
205 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
206 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
if __name__ == "__main__":
|
208 |
import uvicorn
|
209 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
11 |
import asyncio
|
12 |
from fastapi.responses import StreamingResponse, Response
|
13 |
import torch
|
14 |
+
from io import BytesIO
|
15 |
+
import numpy as np
|
16 |
+
import soundfile as sf
|
17 |
|
18 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s")
|
19 |
|
|
|
67 |
model_files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"lilmeaty_garca/{model_name}")
|
68 |
if "Contents" not in model_files:
|
69 |
raise FileNotFoundError(f"Model files not found in S3 for {model_name}")
|
|
|
70 |
s3_model_path = f"s3://{self.bucket_name}/lilmeaty_garca/{model_name.replace('/', '-')}"
|
71 |
logging.info(f"Model {model_name} found on S3 at {s3_model_path}")
|
72 |
return s3_model_path
|
|
|
74 |
logging.error(f"Error downloading from S3: {e}")
|
75 |
raise HTTPException(status_code=500, detail=f"Error downloading model from S3: {e}")
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
def download_model_from_huggingface(self, model_name):
|
78 |
try:
|
79 |
logging.info(f"Downloading model {model_name} from Hugging Face...")
|
80 |
+
model_dir = hf_hub_download(model_name, token=HUGGINGFACE_HUB_TOKEN)
|
81 |
+
model_files = os.listdir(model_dir)
|
82 |
+
for model_file in model_files:
|
83 |
+
s3_path = f"lilmeaty_garca/{model_name}/{model_file}"
|
84 |
+
self.s3_client.upload_file(os.path.join(model_dir, model_file), self.bucket_name, s3_path)
|
85 |
logging.info(f"Model {model_name} saved to S3 successfully.")
|
86 |
except Exception as e:
|
87 |
logging.error(f"Error downloading model {model_name} from Hugging Face: {e}")
|
|
|
93 |
if response.status_code != 200:
|
94 |
logging.error("Error getting Hugging Face model list.")
|
95 |
raise HTTPException(status_code=500, detail="Error getting model list.")
|
|
|
96 |
models = response.json()
|
97 |
for model in models:
|
98 |
model_name = model["id"]
|
|
|
108 |
async def startup_event():
|
109 |
model_loader.run_in_background()
|
110 |
|
|
|
111 |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
|
112 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
113 |
|
|
|
193 |
logging.error(f"Error processing request: {str(e)}")
|
194 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
195 |
|
196 |
+
def download_model_from_s3_or_hf(model_name):
|
197 |
+
try:
|
198 |
+
model_dir = model_loader._download_from_s3(model_name)
|
199 |
+
return model_dir
|
200 |
+
except Exception:
|
201 |
+
model_loader.download_model_from_huggingface(model_name)
|
202 |
+
return model_loader._download_from_s3(model_name)
|
203 |
+
|
204 |
+
def ensure_s3_directories(model_name):
|
205 |
+
try:
|
206 |
+
s3_path = f"lilmeaty_garca/{model_name}"
|
207 |
+
s3_client.put_object(Bucket=S3_BUCKET_NAME, Key=s3_path)
|
208 |
+
except Exception as e:
|
209 |
+
logging.error(f"Error ensuring S3 directories exist for model {model_name}: {e}")
|
210 |
+
|
211 |
if __name__ == "__main__":
|
212 |
import uvicorn
|
213 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|