Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
-
from fastapi.responses import StreamingResponse
|
5 |
from pydantic import BaseModel, field_validator
|
6 |
from transformers import (
|
7 |
AutoConfig,
|
@@ -10,7 +10,7 @@ from transformers import (
|
|
10 |
AutoTokenizer,
|
11 |
GenerationConfig,
|
12 |
StoppingCriteria,
|
13 |
-
StoppingCriteriaList
|
14 |
)
|
15 |
import boto3
|
16 |
import uvicorn
|
@@ -20,6 +20,7 @@ import json
|
|
20 |
from huggingface_hub import login
|
21 |
import base64
|
22 |
from botocore.exceptions import NoCredentialsError
|
|
|
23 |
|
24 |
|
25 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
@@ -44,10 +45,10 @@ class GenerateRequest(BaseModel):
|
|
44 |
input_text: str = ""
|
45 |
task_type: str
|
46 |
temperature: float = 1.0
|
47 |
-
max_new_tokens: int = 3
|
48 |
-
stream: bool = True
|
49 |
top_p: float = 1.0
|
50 |
-
top_k: int = 50
|
51 |
repetition_penalty: float = 1.0
|
52 |
num_return_sequences: int = 1
|
53 |
do_sample: bool = True
|
@@ -93,33 +94,44 @@ class S3ModelLoader:
|
|
93 |
)
|
94 |
|
95 |
tokenizer = AutoTokenizer.from_pretrained(
|
96 |
-
s3_uri, config=config, local_files_only=False
|
97 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
or tokenizer.eos_token_id
|
103 |
-
model_cache[model_name] = (model, tokenizer)
|
104 |
-
return model, tokenizer
|
105 |
except (EnvironmentError, NoCredentialsError):
|
106 |
try:
|
107 |
config = AutoConfig.from_pretrained(
|
108 |
model_name, token=HUGGINGFACE_HUB_TOKEN
|
109 |
)
|
110 |
tokenizer = AutoTokenizer.from_pretrained(
|
111 |
-
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
112 |
)
|
113 |
|
114 |
model = AutoModelForCausalLM.from_pretrained(
|
115 |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
116 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
tokenizer.pad_token_id = config.pad_token_id \
|
122 |
-
or tokenizer.eos_token_id
|
123 |
|
124 |
|
125 |
model.save_pretrained(s3_uri)
|
@@ -135,10 +147,22 @@ class S3ModelLoader:
|
|
135 |
)
|
136 |
|
137 |
tokenizer = AutoTokenizer.from_pretrained(
|
138 |
-
s3_uri, config=config, local_files_only=False
|
139 |
)
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
except Exception as e:
|
143 |
raise HTTPException(
|
144 |
status_code=500, detail=f"Error loading model: {e}"
|
@@ -146,6 +170,37 @@ class S3ModelLoader:
|
|
146 |
|
147 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
@app.post("/generate")
|
150 |
async def generate(request: GenerateRequest):
|
151 |
try:
|
@@ -154,7 +209,7 @@ async def generate(request: GenerateRequest):
|
|
154 |
task_type = request.task_type
|
155 |
temperature = request.temperature
|
156 |
max_new_tokens = request.max_new_tokens
|
157 |
-
stream =
|
158 |
top_p = request.top_p
|
159 |
top_k = request.top_k
|
160 |
repetition_penalty = request.repetition_penalty
|
@@ -162,10 +217,10 @@ async def generate(request: GenerateRequest):
|
|
162 |
do_sample = request.do_sample
|
163 |
stop_sequences = request.stop_sequences
|
164 |
|
165 |
-
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
|
166 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
167 |
model.to(device)
|
168 |
-
|
169 |
if "text-to-text" == task_type:
|
170 |
generation_config = GenerationConfig(
|
171 |
temperature=temperature,
|
@@ -175,20 +230,29 @@ async def generate(request: GenerateRequest):
|
|
175 |
repetition_penalty=repetition_penalty,
|
176 |
do_sample=do_sample,
|
177 |
num_return_sequences=num_return_sequences,
|
178 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
)
|
180 |
-
|
181 |
-
return StreamingResponse(
|
182 |
-
stream_text(model, tokenizer, input_text,
|
183 |
-
generation_config, stop_sequences,
|
184 |
-
device),
|
185 |
-
media_type="text/plain"
|
186 |
-
)
|
187 |
-
else:
|
188 |
-
result = await generate_text(model, tokenizer, input_text,
|
189 |
-
generation_config, stop_sequences,
|
190 |
-
device)
|
191 |
-
return JSONResponse({"text": result, "is_end": True})
|
192 |
else:
|
193 |
return HTTPException(status_code=400, detail="Task type not text-to-text")
|
194 |
|
@@ -197,110 +261,112 @@ async def generate(request: GenerateRequest):
|
|
197 |
status_code=500, detail=f"Internal server error: {str(e)}"
|
198 |
)
|
199 |
|
200 |
-
class StopOnSequences(StoppingCriteria):
|
201 |
-
def __init__(self, stop_sequences, tokenizer):
|
202 |
-
self.stop_sequences = stop_sequences
|
203 |
-
self.tokenizer = tokenizer
|
204 |
-
self.stop_ids = [tokenizer.encode(seq, add_special_tokens=False) for seq in stop_sequences]
|
205 |
-
|
206 |
-
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
207 |
-
|
208 |
-
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
209 |
-
|
210 |
-
for stop_sequence in self.stop_sequences:
|
211 |
-
if stop_sequence in decoded_text:
|
212 |
-
return True
|
213 |
-
return False
|
214 |
|
215 |
async def stream_text(model, tokenizer, input_text,
|
216 |
generation_config, stop_sequences,
|
217 |
-
device
|
|
|
218 |
|
219 |
-
encoded_input = tokenizer(
|
220 |
-
input_text, return_tensors="pt",
|
221 |
-
truncation=True
|
222 |
-
).to(device)
|
223 |
|
224 |
-
|
225 |
-
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
226 |
-
|
227 |
-
output_text = ""
|
228 |
|
229 |
-
|
|
|
|
|
|
|
|
|
230 |
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
max_new_tokens=generation_config.max_new_tokens,
|
235 |
-
temperature=generation_config.temperature,
|
236 |
-
top_p=generation_config.top_p,
|
237 |
-
top_k=generation_config.top_k,
|
238 |
-
repetition_penalty=generation_config.repetition_penalty,
|
239 |
-
num_return_sequences=generation_config.num_return_sequences,
|
240 |
-
output_scores=True,
|
241 |
-
return_dict_in_generate=True,
|
242 |
-
stopping_criteria=stopping_criteria
|
243 |
-
)
|
244 |
-
|
245 |
-
new_text = tokenizer.decode(
|
246 |
-
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
|
247 |
-
skip_special_tokens=True
|
248 |
-
)
|
249 |
-
|
250 |
-
if len(new_text) == 0:
|
251 |
-
if not stop_criteria(outputs.sequences, None):
|
252 |
-
for text in output_text.split():
|
253 |
-
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
254 |
-
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
255 |
-
break
|
256 |
-
|
257 |
-
output_text += new_text
|
258 |
-
|
259 |
-
for text in new_text.split():
|
260 |
-
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
261 |
-
|
262 |
-
if stop_criteria(outputs.sequences, None):
|
263 |
-
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
264 |
-
break
|
265 |
|
266 |
-
|
267 |
-
output_text, return_tensors="pt",
|
268 |
-
truncation=True
|
269 |
-
).to(device)
|
270 |
-
output_text = ""
|
271 |
-
|
272 |
-
|
273 |
-
async def generate_text(model, tokenizer, input_text,
|
274 |
-
generation_config, stop_sequences,
|
275 |
-
device):
|
276 |
-
encoded_input = tokenizer(
|
277 |
-
input_text, return_tensors="pt",
|
278 |
-
truncation=True
|
279 |
-
).to(device)
|
280 |
|
281 |
-
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
|
282 |
-
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
283 |
-
|
284 |
-
outputs = await asyncio.to_thread(model.generate,
|
285 |
-
**encoded_input,
|
286 |
-
do_sample=generation_config.do_sample,
|
287 |
-
max_new_tokens=generation_config.max_new_tokens,
|
288 |
-
temperature=generation_config.temperature,
|
289 |
-
top_p=generation_config.top_p,
|
290 |
-
top_k=generation_config.top_k,
|
291 |
-
repetition_penalty=generation_config.repetition_penalty,
|
292 |
-
num_return_sequences=generation_config.num_return_sequences,
|
293 |
-
output_scores=True,
|
294 |
-
return_dict_in_generate=True,
|
295 |
-
stopping_criteria=stopping_criteria
|
296 |
-
)
|
297 |
|
|
|
|
|
298 |
|
299 |
-
|
300 |
-
|
301 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
|
303 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
304 |
|
305 |
|
306 |
@app.post("/generate-image")
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
+
from fastapi.responses import StreamingResponse
|
5 |
from pydantic import BaseModel, field_validator
|
6 |
from transformers import (
|
7 |
AutoConfig,
|
|
|
10 |
AutoTokenizer,
|
11 |
GenerationConfig,
|
12 |
StoppingCriteria,
|
13 |
+
StoppingCriteriaList
|
14 |
)
|
15 |
import boto3
|
16 |
import uvicorn
|
|
|
20 |
from huggingface_hub import login
|
21 |
import base64
|
22 |
from botocore.exceptions import NoCredentialsError
|
23 |
+
import re
|
24 |
|
25 |
|
26 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
|
|
45 |
input_text: str = ""
|
46 |
task_type: str
|
47 |
temperature: float = 1.0
|
48 |
+
max_new_tokens: int = 3
|
49 |
+
stream: bool = True
|
50 |
top_p: float = 1.0
|
51 |
+
top_k: int = 50
|
52 |
repetition_penalty: float = 1.0
|
53 |
num_return_sequences: int = 1
|
54 |
do_sample: bool = True
|
|
|
94 |
)
|
95 |
|
96 |
tokenizer = AutoTokenizer.from_pretrained(
|
97 |
+
s3_uri, config=config, local_files_only=False, padding_side="left"
|
98 |
)
|
99 |
+
|
100 |
+
eos_token_id = tokenizer.eos_token_id
|
101 |
+
pad_token_id = tokenizer.pad_token_id
|
102 |
+
eos_token = tokenizer.eos_token
|
103 |
+
pad_token = tokenizer.pad_token
|
104 |
+
padding = tokenizer.padding_side
|
105 |
+
|
106 |
+
if eos_token_id is not None and pad_token_id is None:
|
107 |
+
pad_token_id = config.pad_token_id or eos_token_id
|
108 |
+
tokenizer.pad_token_id = pad_token_id
|
109 |
|
110 |
+
model_cache[model_name] = (model, tokenizer,eos_token_id,
|
111 |
+
pad_token_id,eos_token,pad_token,padding)
|
112 |
+
return model, tokenizer,eos_token_id,pad_token_id,eos_token,pad_token,padding
|
|
|
|
|
|
|
113 |
except (EnvironmentError, NoCredentialsError):
|
114 |
try:
|
115 |
config = AutoConfig.from_pretrained(
|
116 |
model_name, token=HUGGINGFACE_HUB_TOKEN
|
117 |
)
|
118 |
tokenizer = AutoTokenizer.from_pretrained(
|
119 |
+
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN, padding_side="left"
|
120 |
)
|
121 |
|
122 |
model = AutoModelForCausalLM.from_pretrained(
|
123 |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
124 |
)
|
125 |
+
|
126 |
+
eos_token_id = tokenizer.eos_token_id
|
127 |
+
pad_token_id = tokenizer.pad_token_id
|
128 |
+
eos_token = tokenizer.eos_token
|
129 |
+
pad_token = tokenizer.pad_token
|
130 |
+
padding = tokenizer.padding_side
|
131 |
|
132 |
+
if eos_token_id is not None and pad_token_id is None:
|
133 |
+
pad_token_id = config.pad_token_id or eos_token_id
|
134 |
+
tokenizer.pad_token_id = pad_token_id
|
|
|
|
|
135 |
|
136 |
|
137 |
model.save_pretrained(s3_uri)
|
|
|
147 |
)
|
148 |
|
149 |
tokenizer = AutoTokenizer.from_pretrained(
|
150 |
+
s3_uri, config=config, local_files_only=False, padding_side="left"
|
151 |
)
|
152 |
+
|
153 |
+
eos_token_id = tokenizer.eos_token_id
|
154 |
+
pad_token_id = tokenizer.pad_token_id
|
155 |
+
eos_token = tokenizer.eos_token
|
156 |
+
pad_token = tokenizer.pad_token
|
157 |
+
padding = tokenizer.padding_side
|
158 |
+
|
159 |
+
if eos_token_id is not None and pad_token_id is None:
|
160 |
+
pad_token_id = config.pad_token_id or eos_token_id
|
161 |
+
tokenizer.pad_token_id = pad_token_id
|
162 |
+
|
163 |
+
model_cache[model_name] = (model, tokenizer,eos_token_id,
|
164 |
+
pad_token_id,eos_token,pad_token,padding)
|
165 |
+
return model, tokenizer,eos_token_id,pad_token_id,eos_token,pad_token,padding
|
166 |
except Exception as e:
|
167 |
raise HTTPException(
|
168 |
status_code=500, detail=f"Error loading model: {e}"
|
|
|
170 |
|
171 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
172 |
|
173 |
+
class StopOnSequencesCriteria(StoppingCriteria):
|
174 |
+
def __init__(self, stop_sequences, tokenizer):
|
175 |
+
self.stop_sequences = stop_sequences
|
176 |
+
self.tokenizer = tokenizer
|
177 |
+
|
178 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
179 |
+
|
180 |
+
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
181 |
+
|
182 |
+
for seq in self.stop_sequences:
|
183 |
+
if seq in decoded_text:
|
184 |
+
return True
|
185 |
+
return False
|
186 |
+
|
187 |
+
async def generate_stream(model, tokenizer, input_text,
|
188 |
+
generation_config, stop_sequences,
|
189 |
+
device, pad_token_id, max_model_length,
|
190 |
+
max_new_tokens):
|
191 |
+
async def stream():
|
192 |
+
past_key_values = None
|
193 |
+
input_ids = None
|
194 |
+
async for token,past_key_values_response,input_ids_response, is_end in stream_text(model, tokenizer, input_text,
|
195 |
+
generation_config, stop_sequences,
|
196 |
+
device,pad_token_id, max_model_length, max_new_tokens, past_key_values, input_ids):
|
197 |
+
past_key_values = past_key_values_response
|
198 |
+
input_ids = input_ids_response
|
199 |
+
if is_end:
|
200 |
+
break
|
201 |
+
yield token
|
202 |
+
return stream()
|
203 |
+
|
204 |
@app.post("/generate")
|
205 |
async def generate(request: GenerateRequest):
|
206 |
try:
|
|
|
209 |
task_type = request.task_type
|
210 |
temperature = request.temperature
|
211 |
max_new_tokens = request.max_new_tokens
|
212 |
+
stream = True
|
213 |
top_p = request.top_p
|
214 |
top_k = request.top_k
|
215 |
repetition_penalty = request.repetition_penalty
|
|
|
217 |
do_sample = request.do_sample
|
218 |
stop_sequences = request.stop_sequences
|
219 |
|
220 |
+
model, tokenizer, eos_token_id, pad_token_id, eos_token, pad_token, padding = await model_loader.load_model_and_tokenizer(model_name)
|
221 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
222 |
model.to(device)
|
223 |
+
|
224 |
if "text-to-text" == task_type:
|
225 |
generation_config = GenerationConfig(
|
226 |
temperature=temperature,
|
|
|
230 |
repetition_penalty=repetition_penalty,
|
231 |
do_sample=do_sample,
|
232 |
num_return_sequences=num_return_sequences,
|
233 |
+
pad_token_id=pad_token_id if pad_token_id is not None else None
|
234 |
+
)
|
235 |
+
|
236 |
+
max_model_length = 3
|
237 |
+
input_text = input_text[:max_model_length]
|
238 |
+
|
239 |
+
streams = [
|
240 |
+
generate_stream(model, tokenizer, input_text,
|
241 |
+
generation_config, stop_sequences,
|
242 |
+
device,pad_token_id, max_model_length, max_new_tokens)
|
243 |
+
for _ in range(num_return_sequences)
|
244 |
+
]
|
245 |
+
|
246 |
+
|
247 |
+
async def stream_response():
|
248 |
+
for stream in asyncio.as_completed(streams):
|
249 |
+
async for chunk in await stream:
|
250 |
+
yield chunk
|
251 |
+
return StreamingResponse(
|
252 |
+
stream_response(),
|
253 |
+
media_type="text/plain"
|
254 |
)
|
255 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
else:
|
257 |
return HTTPException(status_code=400, detail="Task type not text-to-text")
|
258 |
|
|
|
261 |
status_code=500, detail=f"Internal server error: {str(e)}"
|
262 |
)
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
|
265 |
async def stream_text(model, tokenizer, input_text,
|
266 |
generation_config, stop_sequences,
|
267 |
+
device,pad_token_id, max_model_length, max_new_tokens,
|
268 |
+
past_key_values, input_ids):
|
269 |
|
|
|
|
|
|
|
|
|
270 |
|
271 |
+
stop_regex = re.compile(r'[\.\?\!\n]+')
|
|
|
|
|
|
|
272 |
|
273 |
+
def find_stop(output_text, stop_sequences):
|
274 |
+
for seq in stop_sequences:
|
275 |
+
if seq in output_text:
|
276 |
+
last_index = output_text.rfind(seq)
|
277 |
+
return last_index + len(seq)
|
278 |
|
279 |
+
match = stop_regex.search(output_text)
|
280 |
+
if match:
|
281 |
+
return match.end()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
|
283 |
+
return -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
285 |
|
286 |
+
output_text = ""
|
287 |
+
stop_criteria = StoppingCriteriaList([StopOnSequencesCriteria(stop_sequences, tokenizer)])
|
288 |
|
289 |
+
if input_ids is None:
|
290 |
+
encoded_input = tokenizer(
|
291 |
+
input_text, return_tensors="pt",
|
292 |
+
truncation=True,
|
293 |
+
padding = "max_length",
|
294 |
+
max_length=max_model_length
|
295 |
+
).to(device)
|
296 |
+
input_ids = encoded_input.input_ids
|
297 |
+
else:
|
298 |
+
encoded_input = {
|
299 |
+
"input_ids":input_ids,
|
300 |
+
"past_key_values": past_key_values
|
301 |
+
}
|
302 |
|
303 |
+
while True:
|
304 |
+
|
305 |
+
outputs = model.generate(
|
306 |
+
**encoded_input,
|
307 |
+
do_sample=generation_config.do_sample,
|
308 |
+
max_new_tokens=generation_config.max_new_tokens,
|
309 |
+
temperature=generation_config.temperature,
|
310 |
+
top_p=generation_config.top_p,
|
311 |
+
top_k=generation_config.top_k,
|
312 |
+
repetition_penalty=generation_config.repetition_penalty,
|
313 |
+
num_return_sequences=generation_config.num_return_sequences,
|
314 |
+
output_scores=True,
|
315 |
+
return_dict_in_generate=True,
|
316 |
+
pad_token_id=pad_token_id if pad_token_id is not None else None,
|
317 |
+
stopping_criteria = stop_criteria,
|
318 |
+
)
|
319 |
+
|
320 |
+
new_text = tokenizer.decode(
|
321 |
+
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
|
322 |
+
skip_special_tokens=True
|
323 |
+
)
|
324 |
+
|
325 |
+
output_text += new_text
|
326 |
+
|
327 |
+
stop_index = find_stop(output_text, stop_sequences)
|
328 |
+
|
329 |
+
is_end = False
|
330 |
+
if stop_index != -1 or (hasattr(outputs, "sequences") and outputs.sequences[0][-1] == tokenizer.eos_token_id):
|
331 |
+
final_output = output_text[:stop_index] if stop_index != -1 else output_text
|
332 |
+
|
333 |
+
for text in final_output.split():
|
334 |
+
yield json.dumps({"text": text, "is_end": False, "temperature": generation_config.temperature, "top_p": generation_config.top_p, "top_k": generation_config.top_k}) + "\n", \
|
335 |
+
outputs.past_key_values if hasattr(outputs, "past_key_values") else None , \
|
336 |
+
outputs.sequences if hasattr(outputs, "sequences") else None, True
|
337 |
+
|
338 |
+
yield json.dumps({"text": "", "is_end": True, "temperature": generation_config.temperature, "top_p": generation_config.top_p, "top_k": generation_config.top_k}) + "\n",\
|
339 |
+
outputs.past_key_values if hasattr(outputs, "past_key_values") else None, \
|
340 |
+
outputs.sequences if hasattr(outputs, "sequences") else None, True
|
341 |
+
break
|
342 |
+
else:
|
343 |
+
|
344 |
+
tokens = new_text.split()
|
345 |
+
|
346 |
+
for i in range(0, len(tokens), max_new_tokens):
|
347 |
+
chunk = tokens[i:i + max_new_tokens]
|
348 |
+
chunk_text = " ".join(chunk)
|
349 |
+
for text in chunk_text.split():
|
350 |
+
yield json.dumps({"text": text, "is_end": False, "temperature": generation_config.temperature, "top_p": generation_config.top_p, "top_k": generation_config.top_k}) + "\n", \
|
351 |
+
outputs.past_key_values if hasattr(outputs, "past_key_values") else None, \
|
352 |
+
outputs.sequences if hasattr(outputs, "sequences") else None, False
|
353 |
+
|
354 |
+
if len(new_text) == 0:
|
355 |
+
|
356 |
+
for text in output_text.split():
|
357 |
+
yield json.dumps({"text": text, "is_end": False, "temperature": generation_config.temperature, "top_p": generation_config.top_p, "top_k": generation_config.top_k}) + "\n", \
|
358 |
+
outputs.past_key_values if hasattr(outputs, "past_key_values") else None, \
|
359 |
+
outputs.sequences if hasattr(outputs, "sequences") else None, True
|
360 |
+
yield json.dumps({"text": "", "is_end": True, "temperature": generation_config.temperature, "top_p": generation_config.top_p, "top_k": generation_config.top_k}) + "\n",\
|
361 |
+
outputs.past_key_values if hasattr(outputs, "past_key_values") else None, \
|
362 |
+
outputs.sequences if hasattr(outputs, "sequences") else None, True
|
363 |
+
break
|
364 |
+
|
365 |
+
past_key_values = outputs.past_key_values if hasattr(outputs, "past_key_values") else None
|
366 |
+
input_ids = outputs.sequences if hasattr(outputs, "sequences") else None
|
367 |
+
|
368 |
+
output_text = ""
|
369 |
+
|
370 |
|
371 |
|
372 |
@app.post("/generate-image")
|