Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,24 +5,18 @@ import boto3
|
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from fastapi.responses import JSONResponse
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
import asyncio
|
|
|
10 |
|
11 |
-
|
12 |
logger = logging.getLogger(__name__)
|
13 |
-
logger.setLevel(logging.INFO)
|
14 |
-
console_handler = logging.StreamHandler()
|
15 |
-
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
16 |
-
console_handler.setFormatter(formatter)
|
17 |
-
logger.addHandler(console_handler)
|
18 |
|
19 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
20 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
21 |
AWS_REGION = os.getenv("AWS_REGION")
|
22 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
23 |
-
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
24 |
|
25 |
-
MAX_TOKENS = 1024
|
26 |
|
27 |
s3_client = boto3.client(
|
28 |
's3',
|
@@ -88,8 +82,9 @@ class S3DirectStream:
|
|
88 |
model_files = await self.get_model_file_parts(model_prefix)
|
89 |
|
90 |
if not model_files:
|
91 |
-
|
92 |
|
|
|
93 |
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
|
94 |
config_data = config_stream.read()
|
95 |
|
@@ -114,7 +109,7 @@ class S3DirectStream:
|
|
114 |
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
|
115 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
116 |
|
117 |
-
tokenizer = AutoTokenizer.from_pretrained(f"
|
118 |
return tokenizer
|
119 |
except Exception as e:
|
120 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
@@ -138,22 +133,6 @@ class S3DirectStream:
|
|
138 |
except self.s3_client.exceptions.ClientError:
|
139 |
return False
|
140 |
|
141 |
-
async def download_and_upload_to_s3(self, model_prefix, model_name):
|
142 |
-
try:
|
143 |
-
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN)
|
144 |
-
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN)
|
145 |
-
|
146 |
-
if not await self.file_exists_in_s3(f"{model_prefix}/config.json"):
|
147 |
-
with open(config_file, "rb") as file:
|
148 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/config.json", Body=file)
|
149 |
-
|
150 |
-
if not await self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
|
151 |
-
with open(tokenizer_file, "rb") as file:
|
152 |
-
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/tokenizer.json", Body=file)
|
153 |
-
|
154 |
-
except Exception as e:
|
155 |
-
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
|
156 |
-
|
157 |
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
158 |
tokens = tokenizer.encode(text)
|
159 |
chunks = []
|
@@ -169,7 +148,7 @@ def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
|
|
169 |
input_text = tokenizer.decode(tokens[:max_tokens])
|
170 |
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids)
|
171 |
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
|
172 |
-
input_text = input_text[len(input_text):]
|
173 |
return generated_text
|
174 |
|
175 |
@app.post("/predict/")
|
@@ -184,7 +163,7 @@ async def predict(model_request: dict):
|
|
184 |
|
185 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
186 |
|
187 |
-
await streamer.create_s3_folders(model_name)
|
188 |
|
189 |
model = await streamer.load_model_from_s3(model_name)
|
190 |
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
|
@@ -196,22 +175,18 @@ async def predict(model_request: dict):
|
|
196 |
|
197 |
result = await asyncio.to_thread(nlp_pipeline, input_text)
|
198 |
|
199 |
-
|
200 |
-
|
|
|
201 |
full_result = ""
|
202 |
for chunk in chunks:
|
203 |
full_result += continue_generation(chunk, model, tokenizer)
|
204 |
-
return {"result": full_result}
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
except HTTPException as e:
|
209 |
-
logger.error(f"Error al realizar la predicci贸n: {str(e.detail)}")
|
210 |
-
return JSONResponse(status_code=e.status_code, content={"detail": str(e.detail)})
|
211 |
|
212 |
except Exception as e:
|
213 |
-
|
214 |
-
return JSONResponse(status_code=500, content={"detail": "Error inesperado. Intenta m谩s tarde."})
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
import uvicorn
|
|
|
5 |
from fastapi import FastAPI, HTTPException
|
6 |
from fastapi.responses import JSONResponse
|
7 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
8 |
import asyncio
|
9 |
+
import concurrent.futures
|
10 |
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
15 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
16 |
AWS_REGION = os.getenv("AWS_REGION")
|
17 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
|
|
18 |
|
19 |
+
MAX_TOKENS = 1024 # Limite de tokens por fragmento
|
20 |
|
21 |
s3_client = boto3.client(
|
22 |
's3',
|
|
|
82 |
model_files = await self.get_model_file_parts(model_prefix)
|
83 |
|
84 |
if not model_files:
|
85 |
+
raise HTTPException(status_code=404, detail=f"Archivos del modelo {model_name} no encontrados en S3.")
|
86 |
|
87 |
+
# Verificar que existe el archivo config.json
|
88 |
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
|
89 |
config_data = config_stream.read()
|
90 |
|
|
|
109 |
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
|
110 |
tokenizer_data = tokenizer_stream.read().decode("utf-8")
|
111 |
|
112 |
+
tokenizer = AutoTokenizer.from_pretrained(f"{profile}/{model}")
|
113 |
return tokenizer
|
114 |
except Exception as e:
|
115 |
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
|
|
133 |
except self.s3_client.exceptions.ClientError:
|
134 |
return False
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
|
137 |
tokens = tokenizer.encode(text)
|
138 |
chunks = []
|
|
|
148 |
input_text = tokenizer.decode(tokens[:max_tokens])
|
149 |
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids)
|
150 |
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
|
151 |
+
input_text = input_text[len(input_text):] # Si la entrada se agot贸, ya no hay m谩s que procesar
|
152 |
return generated_text
|
153 |
|
154 |
@app.post("/predict/")
|
|
|
163 |
|
164 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
165 |
|
166 |
+
await streamer.create_s3_folders(model_name) # Crear las carpetas si no existen
|
167 |
|
168 |
model = await streamer.load_model_from_s3(model_name)
|
169 |
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
|
|
|
175 |
|
176 |
result = await asyncio.to_thread(nlp_pipeline, input_text)
|
177 |
|
178 |
+
chunks = split_text_by_tokens(result, tokenizer)
|
179 |
+
|
180 |
+
if len(chunks) > 1:
|
181 |
full_result = ""
|
182 |
for chunk in chunks:
|
183 |
full_result += continue_generation(chunk, model, tokenizer)
|
184 |
+
return JSONResponse(content={"result": full_result})
|
185 |
+
else:
|
186 |
+
return JSONResponse(content={"result": result})
|
|
|
|
|
|
|
|
|
187 |
|
188 |
except Exception as e:
|
189 |
+
raise HTTPException(status_code=500, detail=f"Error al realizar la predicci贸n: {e}")
|
|
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
import uvicorn
|