Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,32 +3,31 @@ import logging
|
|
3 |
import requests
|
4 |
import threading
|
5 |
from io import BytesIO
|
6 |
-
from fastapi import FastAPI, HTTPException, Response
|
7 |
from fastapi.responses import StreamingResponse
|
8 |
from pydantic import BaseModel
|
9 |
from transformers import (
|
10 |
AutoConfig,
|
11 |
AutoModelForCausalLM,
|
12 |
AutoTokenizer,
|
13 |
-
pipeline,
|
14 |
GenerationConfig
|
15 |
)
|
16 |
import boto3
|
17 |
-
from huggingface_hub import hf_hub_download
|
18 |
-
import soundfile as sf
|
19 |
-
import numpy as np
|
20 |
import torch
|
21 |
import uvicorn
|
22 |
from tqdm import tqdm
|
23 |
|
|
|
24 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
25 |
|
|
|
26 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
27 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
28 |
AWS_REGION = os.getenv("AWS_REGION")
|
29 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
30 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
31 |
|
|
|
32 |
class GenerateRequest(BaseModel):
|
33 |
model_name: str
|
34 |
input_text: str
|
@@ -42,6 +41,10 @@ class GenerateRequest(BaseModel):
|
|
42 |
num_return_sequences: int = 1
|
43 |
do_sample: bool = True
|
44 |
|
|
|
|
|
|
|
|
|
45 |
class S3ModelLoader:
|
46 |
def __init__(self, bucket_name, s3_client):
|
47 |
self.bucket_name = bucket_name
|
@@ -71,8 +74,8 @@ class S3ModelLoader:
|
|
71 |
async def download_and_save_model_from_huggingface(self, model_name):
|
72 |
try:
|
73 |
with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}") as t:
|
74 |
-
model = AutoModelForCausalLM.from_pretrained(model_name,
|
75 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name,
|
76 |
self.upload_model_to_s3(model_name, model, tokenizer)
|
77 |
return model, tokenizer
|
78 |
except Exception as e:
|
@@ -86,13 +89,12 @@ class S3ModelLoader:
|
|
86 |
except Exception as e:
|
87 |
raise HTTPException(status_code=500, detail=f"Error saving model to S3: {e}")
|
88 |
|
|
|
89 |
app = FastAPI()
|
90 |
|
91 |
-
|
92 |
-
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
93 |
-
|
94 |
@app.post("/generate")
|
95 |
-
async def generate(
|
96 |
try:
|
97 |
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name)
|
98 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -169,7 +171,8 @@ async def generate(request: Request, body: GenerateRequest):
|
|
169 |
except Exception as e:
|
170 |
raise HTTPException(status_code=500, detail=str(e))
|
171 |
|
172 |
-
|
|
|
173 |
models_url = "https://huggingface.co/api/models"
|
174 |
try:
|
175 |
response = requests.get(models_url)
|
@@ -179,16 +182,14 @@ def download_all_models_in_background():
|
|
179 |
models = response.json()
|
180 |
for model in models:
|
181 |
model_name = model["id"]
|
182 |
-
model_loader.download_and_save_model_from_huggingface(model_name)
|
183 |
except Exception as e:
|
184 |
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.")
|
185 |
|
|
|
186 |
def run_in_background():
|
187 |
threading.Thread(target=download_all_models_in_background, daemon=True).start()
|
188 |
|
189 |
-
|
190 |
-
async def startup_event():
|
191 |
-
run_in_background()
|
192 |
-
|
193 |
if __name__ == "__main__":
|
194 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
3 |
import requests
|
4 |
import threading
|
5 |
from io import BytesIO
|
6 |
+
from fastapi import FastAPI, HTTPException, Response
|
7 |
from fastapi.responses import StreamingResponse
|
8 |
from pydantic import BaseModel
|
9 |
from transformers import (
|
10 |
AutoConfig,
|
11 |
AutoModelForCausalLM,
|
12 |
AutoTokenizer,
|
|
|
13 |
GenerationConfig
|
14 |
)
|
15 |
import boto3
|
|
|
|
|
|
|
16 |
import torch
|
17 |
import uvicorn
|
18 |
from tqdm import tqdm
|
19 |
|
20 |
+
# Configuraci贸n de logging
|
21 |
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
22 |
|
23 |
+
# Variables de entorno
|
24 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
25 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
26 |
AWS_REGION = os.getenv("AWS_REGION")
|
27 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
28 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
29 |
|
30 |
+
# Clase para la petici贸n de generaci贸n
|
31 |
class GenerateRequest(BaseModel):
|
32 |
model_name: str
|
33 |
input_text: str
|
|
|
41 |
num_return_sequences: int = 1
|
42 |
do_sample: bool = True
|
43 |
|
44 |
+
class Config:
|
45 |
+
protected_namespaces = ()
|
46 |
+
|
47 |
+
# Clase para cargar modelos desde S3
|
48 |
class S3ModelLoader:
|
49 |
def __init__(self, bucket_name, s3_client):
|
50 |
self.bucket_name = bucket_name
|
|
|
74 |
async def download_and_save_model_from_huggingface(self, model_name):
|
75 |
try:
|
76 |
with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}") as t:
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=HUGGINGFACE_HUB_TOKEN, _tqdm=t)
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=HUGGINGFACE_HUB_TOKEN)
|
79 |
self.upload_model_to_s3(model_name, model, tokenizer)
|
80 |
return model, tokenizer
|
81 |
except Exception as e:
|
|
|
89 |
except Exception as e:
|
90 |
raise HTTPException(status_code=500, detail=f"Error saving model to S3: {e}")
|
91 |
|
92 |
+
# Crear la instancia de FastAPI
|
93 |
app = FastAPI()
|
94 |
|
95 |
+
# Funci贸n de generaci贸n asincr贸nica
|
|
|
|
|
96 |
@app.post("/generate")
|
97 |
+
async def generate(body: GenerateRequest):
|
98 |
try:
|
99 |
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name)
|
100 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
171 |
except Exception as e:
|
172 |
raise HTTPException(status_code=500, detail=str(e))
|
173 |
|
174 |
+
# Descargar todos los modelos en segundo plano
|
175 |
+
async def download_all_models_in_background():
|
176 |
models_url = "https://huggingface.co/api/models"
|
177 |
try:
|
178 |
response = requests.get(models_url)
|
|
|
182 |
models = response.json()
|
183 |
for model in models:
|
184 |
model_name = model["id"]
|
185 |
+
await model_loader.download_and_save_model_from_huggingface(model_name)
|
186 |
except Exception as e:
|
187 |
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.")
|
188 |
|
189 |
+
# Funci贸n que corre en segundo plano para descargar modelos
|
190 |
def run_in_background():
|
191 |
threading.Thread(target=download_all_models_in_background, daemon=True).start()
|
192 |
|
193 |
+
# Si este archivo se ejecuta directamente, inicia el servidor
|
|
|
|
|
|
|
194 |
if __name__ == "__main__":
|
195 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|