Hjgugugjhuhjggg commited on
Commit
84aad02
·
verified ·
1 Parent(s): 9c4d42f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -21
app.py CHANGED
@@ -4,7 +4,6 @@ from fastapi import FastAPI, HTTPException
4
  from fastapi.responses import StreamingResponse
5
  from pydantic import BaseModel
6
  from transformers import (
7
- AutoConfig,
8
  AutoModelForCausalLM,
9
  AutoTokenizer,
10
  GenerationConfig,
@@ -59,7 +58,7 @@ class S3ModelLoader:
59
  )
60
 
61
  def _get_s3_uri(self, model_name):
62
- return f"s3://{self.bucket_name}/{model_name}"
63
 
64
  def load_model_and_tokenizer(self, model_name):
65
  if model_name in token_dict:
@@ -224,7 +223,7 @@ async def generate_text_to_speech(request: GenerateRequest):
224
  audio = audio_generator(validated_body.input_text)[0]
225
 
226
  audio_byte_arr = BytesIO()
227
- audio.save(audio_byte_arr)
228
  audio_byte_arr.seek(0)
229
 
230
  return StreamingResponse(audio_byte_arr, media_type="audio/wav")
@@ -232,24 +231,6 @@ async def generate_text_to_speech(request: GenerateRequest):
232
  except Exception as e:
233
  raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
234
 
235
- # Endpoint para generar video
236
- @app.post("/generate-video")
237
- async def generate_video(request: GenerateRequest):
238
- try:
239
- validated_body = request
240
- device = "cuda" if torch.cuda.is_available() else "cpu"
241
- video_generator = pipeline("text-to-video", model=validated_body.model_name, device=device)
242
- video = video_generator(validated_body.input_text)[0]
243
-
244
- video_byte_arr = BytesIO()
245
- video.save(video_byte_arr, format="MP4")
246
- video_byte_arr.seek(0)
247
-
248
- return StreamingResponse(video_byte_arr, media_type="video/mp4")
249
-
250
- except Exception as e:
251
- raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
252
-
253
  # Ejecutar el servidor FastAPI con Uvicorn
254
  if __name__ == "__main__":
255
  import uvicorn
 
4
  from fastapi.responses import StreamingResponse
5
  from pydantic import BaseModel
6
  from transformers import (
 
7
  AutoModelForCausalLM,
8
  AutoTokenizer,
9
  GenerationConfig,
 
58
  )
59
 
60
  def _get_s3_uri(self, model_name):
61
+ return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
62
 
63
  def load_model_and_tokenizer(self, model_name):
64
  if model_name in token_dict:
 
223
  audio = audio_generator(validated_body.input_text)[0]
224
 
225
  audio_byte_arr = BytesIO()
226
+ audio.save(audio_byte_arr, format="WAV")
227
  audio_byte_arr.seek(0)
228
 
229
  return StreamingResponse(audio_byte_arr, media_type="audio/wav")
 
231
  except Exception as e:
232
  raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
233
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
234
  # Ejecutar el servidor FastAPI con Uvicorn
235
  if __name__ == "__main__":
236
  import uvicorn