Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,22 +6,19 @@ import boto3
|
|
6 |
from dotenv import load_dotenv
|
7 |
import os
|
8 |
import uvicorn
|
9 |
-
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer
|
10 |
import safetensors.torch
|
|
|
11 |
from fastapi.responses import StreamingResponse
|
12 |
-
from tqdm import tqdm
|
13 |
|
14 |
-
# Cargar las variables de entorno desde el archivo .env
|
15 |
load_dotenv()
|
16 |
|
17 |
-
# Cargar las credenciales de AWS y el token de Hugging Face desde las variables de entorno
|
18 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
19 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
20 |
AWS_REGION = os.getenv("AWS_REGION")
|
21 |
-
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
22 |
-
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
23 |
|
24 |
-
# Cliente S3 de Amazon
|
25 |
s3_client = boto3.client(
|
26 |
's3',
|
27 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
@@ -31,12 +28,11 @@ s3_client = boto3.client(
|
|
31 |
|
32 |
app = FastAPI()
|
33 |
|
34 |
-
# Pydantic Model para el cuerpo de la solicitud del endpoint /download_model/
|
35 |
class DownloadModelRequest(BaseModel):
|
36 |
model_name: str
|
37 |
pipeline_task: str
|
38 |
input_text: str
|
39 |
-
revision: str = "main"
|
40 |
|
41 |
class S3DirectStream:
|
42 |
def __init__(self, bucket_name):
|
@@ -50,11 +46,10 @@ class S3DirectStream:
|
|
50 |
|
51 |
def stream_from_s3(self, key):
|
52 |
try:
|
53 |
-
print(f"Descargando archivo {key} desde S3...")
|
54 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
55 |
-
return response['Body']
|
56 |
except self.s3_client.exceptions.NoSuchKey:
|
57 |
-
raise HTTPException(status_code=404, detail=f"
|
58 |
|
59 |
def file_exists_in_s3(self, key):
|
60 |
try:
|
@@ -65,127 +60,105 @@ class S3DirectStream:
|
|
65 |
|
66 |
def load_model_from_stream(self, model_prefix, revision):
|
67 |
try:
|
68 |
-
print(f"Cargando el modelo {model_prefix} desde S3...")
|
69 |
if self.file_exists_in_s3(f"{model_prefix}/config.json") and \
|
70 |
(self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin") or self.file_exists_in_s3(f"{model_prefix}/model.safetensors")):
|
71 |
-
print(f"Modelo {model_prefix} ya existe en S3. No es necesario descargarlo.")
|
72 |
return self.load_model_from_existing_s3(model_prefix)
|
73 |
-
|
74 |
-
|
75 |
-
self.download_and_upload_to_s3(model_prefix, revision) # Pasamos 'revision' aqu铆
|
76 |
return self.load_model_from_stream(model_prefix, revision)
|
77 |
except HTTPException as e:
|
78 |
-
print(f"Error al cargar el modelo: {e}")
|
79 |
return None
|
80 |
|
81 |
def load_model_from_existing_s3(self, model_prefix):
|
82 |
-
# Cargar el modelo y los archivos necesarios desde S3
|
83 |
-
print(f"Cargando los archivos {model_prefix} desde S3...")
|
84 |
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
|
85 |
-
|
86 |
-
|
87 |
-
print(f"Cargando el modelo de lenguaje {model_prefix}...")
|
88 |
|
89 |
-
# Verificar si el archivo es un safetensor o un archivo binario
|
90 |
if self.file_exists_in_s3(f"{model_prefix}/model.safetensors"):
|
91 |
-
# Usar safetensors si el archivo es de tipo safetensors
|
92 |
model_stream = self.stream_from_s3(f"{model_prefix}/model.safetensors")
|
93 |
-
model = AutoModelForCausalLM.from_config(
|
94 |
-
model.load_state_dict(safetensors.torch.load_stream(model_stream))
|
95 |
-
|
96 |
-
# Cargar el modelo utilizando pytorch si el archivo es .bin
|
97 |
model_stream = self.stream_from_s3(f"{model_prefix}/pytorch_model.bin")
|
98 |
-
model = AutoModelForCausalLM.from_config(
|
99 |
-
|
100 |
-
|
|
|
|
|
101 |
return model
|
102 |
|
|
|
|
|
103 |
def load_tokenizer_from_stream(self, model_prefix):
|
104 |
try:
|
105 |
if self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
|
106 |
-
print(f"Tokenizer para {model_prefix} ya existe en S3. No es necesario descargarlo.")
|
107 |
return self.load_tokenizer_from_existing_s3(model_prefix)
|
108 |
-
|
109 |
-
print(f"Tokenizer para {model_prefix} no encontrado. Procediendo a descargar...")
|
110 |
-
self.download_and_upload_to_s3(model_prefix) # Pasamos 'revision' aqu铆 tambi茅n
|
111 |
return self.load_tokenizer_from_stream(model_prefix)
|
112 |
except HTTPException as e:
|
113 |
-
print(f"Error al cargar el tokenizer: {e}")
|
114 |
return None
|
115 |
|
116 |
def load_tokenizer_from_existing_s3(self, model_prefix):
|
117 |
-
print(f"Cargando el tokenizer para {model_prefix} desde S3...")
|
118 |
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json")
|
119 |
-
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream)
|
120 |
return tokenizer
|
121 |
|
122 |
-
|
123 |
-
|
124 |
model_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/pytorch_model.bin"
|
125 |
safetensors_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/model.safetensors"
|
126 |
tokenizer_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/tokenizer.json"
|
127 |
config_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/config.json"
|
128 |
|
129 |
-
print(f"Descargando y subiendo archivos para el modelo {model_prefix} a S3...")
|
130 |
self.download_and_upload_to_s3_url(model_url, f"{model_prefix}/pytorch_model.bin")
|
131 |
self.download_and_upload_to_s3_url(safetensors_url, f"{model_prefix}/model.safetensors")
|
132 |
self.download_and_upload_to_s3_url(tokenizer_url, f"{model_prefix}/tokenizer.json")
|
133 |
self.download_and_upload_to_s3_url(config_url, f"{model_prefix}/config.json")
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
response = requests.get(url)
|
138 |
if response.status_code == 200:
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
142 |
else:
|
143 |
-
raise HTTPException(status_code=500, detail=f"Error
|
|
|
144 |
|
145 |
|
146 |
@app.post("/predict/")
|
147 |
async def predict(model_request: DownloadModelRequest):
|
148 |
try:
|
149 |
-
print(f"Recibiendo solicitud para predecir con el modelo {model_request.model_name}...")
|
150 |
-
|
151 |
model_name = model_request.model_name
|
152 |
revision = model_request.revision
|
153 |
|
154 |
-
# Cargar el modelo y tokenizer desde S3
|
155 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
156 |
model = streamer.load_model_from_stream(model_name, revision)
|
157 |
tokenizer = streamer.load_tokenizer_from_stream(model_name)
|
158 |
|
159 |
-
# Obtener el pipeline adecuado seg煤n la solicitud
|
160 |
task = model_request.pipeline_task
|
161 |
-
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering",
|
162 |
-
raise HTTPException(status_code=400, detail="
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
s3_key = f"{model_request.model_name}/generated_audio.wav"
|
177 |
-
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="audio/wav")
|
178 |
-
|
179 |
-
elif task == "text-to-video":
|
180 |
-
s3_key = f"{model_request.model_name}/generated_video.mp4"
|
181 |
-
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="video/mp4")
|
182 |
-
|
183 |
-
# Devolver resultados de texto u otros tipos de tarea
|
184 |
-
return {"result": outputs}
|
185 |
|
186 |
except Exception as e:
|
187 |
-
|
|
|
|
|
188 |
|
189 |
|
190 |
if __name__ == "__main__":
|
191 |
-
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
6 |
from dotenv import load_dotenv
|
7 |
import os
|
8 |
import uvicorn
|
9 |
+
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer, AutoConfig, TextIteratorStreamer
|
10 |
import safetensors.torch
|
11 |
+
import torch
|
12 |
from fastapi.responses import StreamingResponse
|
|
|
13 |
|
|
|
14 |
load_dotenv()
|
15 |
|
|
|
16 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
17 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
18 |
AWS_REGION = os.getenv("AWS_REGION")
|
19 |
+
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
20 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
21 |
|
|
|
22 |
s3_client = boto3.client(
|
23 |
's3',
|
24 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
|
|
28 |
|
29 |
app = FastAPI()
|
30 |
|
|
|
31 |
class DownloadModelRequest(BaseModel):
|
32 |
model_name: str
|
33 |
pipeline_task: str
|
34 |
input_text: str
|
35 |
+
revision: str = "main"
|
36 |
|
37 |
class S3DirectStream:
|
38 |
def __init__(self, bucket_name):
|
|
|
46 |
|
47 |
def stream_from_s3(self, key):
|
48 |
try:
|
|
|
49 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
50 |
+
return response['Body']
|
51 |
except self.s3_client.exceptions.NoSuchKey:
|
52 |
+
raise HTTPException(status_code=404, detail=f"File {key} not found in S3")
|
53 |
|
54 |
def file_exists_in_s3(self, key):
|
55 |
try:
|
|
|
60 |
|
61 |
def load_model_from_stream(self, model_prefix, revision):
|
62 |
try:
|
|
|
63 |
if self.file_exists_in_s3(f"{model_prefix}/config.json") and \
|
64 |
(self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin") or self.file_exists_in_s3(f"{model_prefix}/model.safetensors")):
|
|
|
65 |
return self.load_model_from_existing_s3(model_prefix)
|
66 |
+
|
67 |
+
self.download_and_upload_to_s3(model_prefix, revision)
|
|
|
68 |
return self.load_model_from_stream(model_prefix, revision)
|
69 |
except HTTPException as e:
|
|
|
70 |
return None
|
71 |
|
72 |
def load_model_from_existing_s3(self, model_prefix):
|
|
|
|
|
73 |
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
|
74 |
+
config = AutoConfig.from_pretrained(config_stream) # Directly from stream
|
|
|
|
|
75 |
|
|
|
76 |
if self.file_exists_in_s3(f"{model_prefix}/model.safetensors"):
|
|
|
77 |
model_stream = self.stream_from_s3(f"{model_prefix}/model.safetensors")
|
78 |
+
model = AutoModelForCausalLM.from_config(config)
|
79 |
+
model.load_state_dict(safetensors.torch.load_stream(model_stream))
|
80 |
+
elif self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin"):
|
|
|
81 |
model_stream = self.stream_from_s3(f"{model_prefix}/pytorch_model.bin")
|
82 |
+
model = AutoModelForCausalLM.from_config(config)
|
83 |
+
state_dict = torch.load(model_stream, map_location="cpu") # Load directly
|
84 |
+
model.load_state_dict(state_dict)
|
85 |
+
else:
|
86 |
+
raise EnvironmentError(f"No model file found for {model_prefix} in S3")
|
87 |
return model
|
88 |
|
89 |
+
|
90 |
+
|
91 |
def load_tokenizer_from_stream(self, model_prefix):
|
92 |
try:
|
93 |
if self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
|
|
|
94 |
return self.load_tokenizer_from_existing_s3(model_prefix)
|
95 |
+
self.download_and_upload_to_s3(model_prefix)
|
|
|
|
|
96 |
return self.load_tokenizer_from_stream(model_prefix)
|
97 |
except HTTPException as e:
|
|
|
98 |
return None
|
99 |
|
100 |
def load_tokenizer_from_existing_s3(self, model_prefix):
|
|
|
101 |
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json")
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream) # Directly from stream
|
103 |
return tokenizer
|
104 |
|
105 |
+
|
106 |
+
def download_and_upload_to_s3(self, model_prefix, revision="main"):
|
107 |
model_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/pytorch_model.bin"
|
108 |
safetensors_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/model.safetensors"
|
109 |
tokenizer_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/tokenizer.json"
|
110 |
config_url = f"https://huggingface.co/{model_prefix}/resolve/{revision}/config.json"
|
111 |
|
|
|
112 |
self.download_and_upload_to_s3_url(model_url, f"{model_prefix}/pytorch_model.bin")
|
113 |
self.download_and_upload_to_s3_url(safetensors_url, f"{model_prefix}/model.safetensors")
|
114 |
self.download_and_upload_to_s3_url(tokenizer_url, f"{model_prefix}/tokenizer.json")
|
115 |
self.download_and_upload_to_s3_url(config_url, f"{model_prefix}/config.json")
|
116 |
|
117 |
+
|
118 |
+
def download_and_upload_to_s3_url(self, url, s3_key):
|
119 |
+
response = requests.get(url, stream=True)
|
120 |
if response.status_code == 200:
|
121 |
+
self.s3_client.upload_fileobj(response.raw, self.bucket_name, s3_key) # Direct upload
|
122 |
+
elif response.status_code == 404:
|
123 |
+
raise HTTPException(status_code=404, detail=f"Error downloading file from {url}. File not found.")
|
124 |
+
|
125 |
else:
|
126 |
+
raise HTTPException(status_code=500, detail=f"Error downloading file from {url}")
|
127 |
+
|
128 |
|
129 |
|
130 |
@app.post("/predict/")
|
131 |
async def predict(model_request: DownloadModelRequest):
|
132 |
try:
|
|
|
|
|
133 |
model_name = model_request.model_name
|
134 |
revision = model_request.revision
|
135 |
|
|
|
136 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
137 |
model = streamer.load_model_from_stream(model_name, revision)
|
138 |
tokenizer = streamer.load_tokenizer_from_stream(model_name)
|
139 |
|
|
|
140 |
task = model_request.pipeline_task
|
141 |
+
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "summarization", "zero-shot-classification"]:
|
142 |
+
raise HTTPException(status_code=400, detail="Unsupported pipeline task")
|
143 |
+
|
144 |
+
if task == "text-generation":
|
145 |
+
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
146 |
+
inputs = tokenizer(model_request.input_text, return_tensors="pt").to(model.device)
|
147 |
+
generation_kwargs = dict(inputs, streamer=text_streamer)
|
148 |
+
model.generate(**generation_kwargs)
|
149 |
+
return StreamingResponse(iter([tokenizer.decode(token) for token in text_streamer]), media_type="text/event-stream")
|
150 |
+
|
151 |
+
else:
|
152 |
+
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer, device_map="auto", trust_remote_code=True)
|
153 |
+
outputs = nlp_pipeline(model_request.input_text)
|
154 |
+
return {"result": outputs}
|
155 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
except Exception as e:
|
158 |
+
print(f"Complete Error: {e}")
|
159 |
+
raise HTTPException(status_code=500, detail=f"Error processing request: {str(e)}")
|
160 |
+
|
161 |
|
162 |
|
163 |
if __name__ == "__main__":
|
164 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|