Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -43,10 +43,10 @@ class GenerateRequest(BaseModel):
|
|
43 |
input_text: str = ""
|
44 |
task_type: str
|
45 |
temperature: float = 1.0
|
46 |
-
max_new_tokens: int = 3
|
47 |
stream: bool = True
|
48 |
top_p: float = 1.0
|
49 |
-
top_k: int = 50
|
50 |
repetition_penalty: float = 1.0
|
51 |
num_return_sequences: int = 1
|
52 |
do_sample: bool = True
|
@@ -92,44 +92,33 @@ class S3ModelLoader:
|
|
92 |
)
|
93 |
|
94 |
tokenizer = AutoTokenizer.from_pretrained(
|
95 |
-
s3_uri, config=config, local_files_only=False
|
96 |
)
|
97 |
-
|
98 |
-
eos_token_id = tokenizer.eos_token_id
|
99 |
-
pad_token_id = tokenizer.pad_token_id
|
100 |
-
eos_token = tokenizer.eos_token
|
101 |
-
pad_token = tokenizer.pad_token
|
102 |
-
padding = tokenizer.padding_side
|
103 |
-
|
104 |
-
if eos_token_id is not None and pad_token_id is None:
|
105 |
-
pad_token_id = config.pad_token_id or eos_token_id
|
106 |
-
tokenizer.pad_token_id = pad_token_id
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
|
|
|
|
|
|
111 |
except (EnvironmentError, NoCredentialsError):
|
112 |
try:
|
113 |
config = AutoConfig.from_pretrained(
|
114 |
model_name, token=HUGGINGFACE_HUB_TOKEN
|
115 |
)
|
116 |
tokenizer = AutoTokenizer.from_pretrained(
|
117 |
-
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
118 |
)
|
119 |
|
120 |
model = AutoModelForCausalLM.from_pretrained(
|
121 |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
122 |
)
|
123 |
-
|
124 |
-
eos_token_id = tokenizer.eos_token_id
|
125 |
-
pad_token_id = tokenizer.pad_token_id
|
126 |
-
eos_token = tokenizer.eos_token
|
127 |
-
pad_token = tokenizer.pad_token
|
128 |
-
padding = tokenizer.padding_side
|
129 |
|
130 |
-
|
131 |
-
|
132 |
-
|
|
|
|
|
133 |
|
134 |
|
135 |
model.save_pretrained(s3_uri)
|
@@ -145,22 +134,10 @@ class S3ModelLoader:
|
|
145 |
)
|
146 |
|
147 |
tokenizer = AutoTokenizer.from_pretrained(
|
148 |
-
s3_uri, config=config, local_files_only=False
|
149 |
)
|
150 |
-
|
151 |
-
|
152 |
-
pad_token_id = tokenizer.pad_token_id
|
153 |
-
eos_token = tokenizer.eos_token
|
154 |
-
pad_token = tokenizer.pad_token
|
155 |
-
padding = tokenizer.padding_side
|
156 |
-
|
157 |
-
if eos_token_id is not None and pad_token_id is None:
|
158 |
-
pad_token_id = config.pad_token_id or eos_token_id
|
159 |
-
tokenizer.pad_token_id = pad_token_id
|
160 |
-
|
161 |
-
model_cache[model_name] = (model, tokenizer,eos_token_id,
|
162 |
-
pad_token_id,eos_token,pad_token,padding)
|
163 |
-
return model, tokenizer,eos_token_id,pad_token_id,eos_token,pad_token,padding
|
164 |
except Exception as e:
|
165 |
raise HTTPException(
|
166 |
status_code=500, detail=f"Error loading model: {e}"
|
@@ -184,7 +161,7 @@ async def generate(request: GenerateRequest):
|
|
184 |
do_sample = request.do_sample
|
185 |
stop_sequences = request.stop_sequences
|
186 |
|
187 |
-
model, tokenizer
|
188 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
189 |
model.to(device)
|
190 |
|
@@ -197,17 +174,12 @@ async def generate(request: GenerateRequest):
|
|
197 |
repetition_penalty=repetition_penalty,
|
198 |
do_sample=do_sample,
|
199 |
num_return_sequences=num_return_sequences,
|
200 |
-
pad_token_id=pad_token_id if pad_token_id is not None else None
|
201 |
)
|
202 |
-
|
203 |
-
|
204 |
-
max_model_length = model.config.max_position_embeddings
|
205 |
-
input_text = input_text[:max_model_length]
|
206 |
|
207 |
return StreamingResponse(
|
208 |
stream_text(model, tokenizer, input_text,
|
209 |
generation_config, stop_sequences,
|
210 |
-
device
|
211 |
media_type="text/plain"
|
212 |
)
|
213 |
else:
|
@@ -221,13 +193,11 @@ async def generate(request: GenerateRequest):
|
|
221 |
|
222 |
async def stream_text(model, tokenizer, input_text,
|
223 |
generation_config, stop_sequences,
|
224 |
-
device
|
225 |
|
226 |
encoded_input = tokenizer(
|
227 |
input_text, return_tensors="pt",
|
228 |
-
truncation=True
|
229 |
-
padding = "max_length",
|
230 |
-
max_length=max_model_length
|
231 |
).to(device)
|
232 |
|
233 |
stop_regex = re.compile(r'[\.\?\!\n]+')
|
@@ -258,7 +228,6 @@ async def stream_text(model, tokenizer, input_text,
|
|
258 |
num_return_sequences=generation_config.num_return_sequences,
|
259 |
output_scores=True,
|
260 |
return_dict_in_generate=True,
|
261 |
-
pad_token_id=pad_token_id if pad_token_id is not None else None
|
262 |
)
|
263 |
|
264 |
new_text = tokenizer.decode(
|
@@ -286,16 +255,15 @@ async def stream_text(model, tokenizer, input_text,
|
|
286 |
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
287 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
288 |
break
|
289 |
-
|
290 |
encoded_input = tokenizer(
|
291 |
-
|
292 |
-
truncation=True
|
293 |
-
padding = "max_length" ,
|
294 |
-
max_length = max_model_length
|
295 |
).to(device)
|
296 |
output_text = ""
|
297 |
|
298 |
|
|
|
299 |
@app.post("/generate-image")
|
300 |
async def generate_image(request: GenerateRequest):
|
301 |
try:
|
|
|
43 |
input_text: str = ""
|
44 |
task_type: str
|
45 |
temperature: float = 1.0
|
46 |
+
max_new_tokens: int = 3
|
47 |
stream: bool = True
|
48 |
top_p: float = 1.0
|
49 |
+
top_k: int = 50
|
50 |
repetition_penalty: float = 1.0
|
51 |
num_return_sequences: int = 1
|
52 |
do_sample: bool = True
|
|
|
92 |
)
|
93 |
|
94 |
tokenizer = AutoTokenizer.from_pretrained(
|
95 |
+
s3_uri, config=config, local_files_only=False
|
96 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
if tokenizer.eos_token_id is not None and \
|
99 |
+
tokenizer.pad_token_id is None:
|
100 |
+
tokenizer.pad_token_id = config.pad_token_id \
|
101 |
+
or tokenizer.eos_token_id
|
102 |
+
model_cache[model_name] = (model, tokenizer)
|
103 |
+
return model, tokenizer
|
104 |
except (EnvironmentError, NoCredentialsError):
|
105 |
try:
|
106 |
config = AutoConfig.from_pretrained(
|
107 |
model_name, token=HUGGINGFACE_HUB_TOKEN
|
108 |
)
|
109 |
tokenizer = AutoTokenizer.from_pretrained(
|
110 |
+
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
111 |
)
|
112 |
|
113 |
model = AutoModelForCausalLM.from_pretrained(
|
114 |
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
115 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
|
118 |
+
if tokenizer.eos_token_id is not None and \
|
119 |
+
tokenizer.pad_token_id is None:
|
120 |
+
tokenizer.pad_token_id = config.pad_token_id \
|
121 |
+
or tokenizer.eos_token_id
|
122 |
|
123 |
|
124 |
model.save_pretrained(s3_uri)
|
|
|
134 |
)
|
135 |
|
136 |
tokenizer = AutoTokenizer.from_pretrained(
|
137 |
+
s3_uri, config=config, local_files_only=False
|
138 |
)
|
139 |
+
model_cache[model_name] = (model, tokenizer)
|
140 |
+
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
except Exception as e:
|
142 |
raise HTTPException(
|
143 |
status_code=500, detail=f"Error loading model: {e}"
|
|
|
161 |
do_sample = request.do_sample
|
162 |
stop_sequences = request.stop_sequences
|
163 |
|
164 |
+
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
|
165 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
166 |
model.to(device)
|
167 |
|
|
|
174 |
repetition_penalty=repetition_penalty,
|
175 |
do_sample=do_sample,
|
176 |
num_return_sequences=num_return_sequences,
|
|
|
177 |
)
|
|
|
|
|
|
|
|
|
178 |
|
179 |
return StreamingResponse(
|
180 |
stream_text(model, tokenizer, input_text,
|
181 |
generation_config, stop_sequences,
|
182 |
+
device),
|
183 |
media_type="text/plain"
|
184 |
)
|
185 |
else:
|
|
|
193 |
|
194 |
async def stream_text(model, tokenizer, input_text,
|
195 |
generation_config, stop_sequences,
|
196 |
+
device):
|
197 |
|
198 |
encoded_input = tokenizer(
|
199 |
input_text, return_tensors="pt",
|
200 |
+
truncation=True
|
|
|
|
|
201 |
).to(device)
|
202 |
|
203 |
stop_regex = re.compile(r'[\.\?\!\n]+')
|
|
|
228 |
num_return_sequences=generation_config.num_return_sequences,
|
229 |
output_scores=True,
|
230 |
return_dict_in_generate=True,
|
|
|
231 |
)
|
232 |
|
233 |
new_text = tokenizer.decode(
|
|
|
255 |
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
256 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
257 |
break
|
258 |
+
|
259 |
encoded_input = tokenizer(
|
260 |
+
output_text, return_tensors="pt",
|
261 |
+
truncation=True
|
|
|
|
|
262 |
).to(device)
|
263 |
output_text = ""
|
264 |
|
265 |
|
266 |
+
|
267 |
@app.post("/generate-image")
|
268 |
async def generate_image(request: GenerateRequest):
|
269 |
try:
|