Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
-
from fastapi import FastAPI
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
from pydantic import BaseModel, field_validator
|
6 |
from transformers import (
|
@@ -23,7 +23,9 @@ AWS_REGION = os.getenv("AWS_REGION")
|
|
23 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
24 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
25 |
|
26 |
-
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,
|
|
|
|
|
27 |
|
28 |
app = FastAPI()
|
29 |
|
@@ -88,7 +90,7 @@ class S3ModelLoader:
|
|
88 |
return model, tokenizer
|
89 |
except Exception as e:
|
90 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
91 |
-
|
92 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
93 |
|
94 |
@app.post("/generate")
|
@@ -123,31 +125,47 @@ async def generate(request: GenerateRequest):
|
|
123 |
)
|
124 |
|
125 |
return StreamingResponse(
|
126 |
-
stream_text(model, tokenizer, input_text,
|
|
|
|
|
127 |
media_type="text/plain"
|
128 |
)
|
129 |
-
|
130 |
except Exception as e:
|
131 |
-
raise HTTPException(status_code=500,
|
|
|
|
|
132 |
|
133 |
-
async def stream_text(model, tokenizer, input_text,
|
134 |
-
|
|
|
|
|
|
|
|
|
|
|
135 |
input_length = encoded_input["input_ids"].shape[1]
|
136 |
remaining_tokens = max_length - input_length
|
137 |
|
138 |
if remaining_tokens <= 0:
|
139 |
yield ""
|
140 |
|
141 |
-
generation_config.max_new_tokens = min(
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
146 |
|
147 |
-
|
148 |
|
|
|
149 |
output_text = ""
|
150 |
-
|
|
|
|
|
151 |
**encoded_input,
|
152 |
do_sample=generation_config.do_sample,
|
153 |
max_new_tokens=generation_config.max_new_tokens,
|
@@ -156,42 +174,42 @@ async def stream_text(model, tokenizer, input_text, generation_config, stop_sequ
|
|
156 |
top_k=generation_config.top_k,
|
157 |
repetition_penalty=generation_config.repetition_penalty,
|
158 |
num_return_sequences=generation_config.num_return_sequences,
|
159 |
-
stopping_criteria=stopping_criteria,
|
160 |
output_scores=True,
|
161 |
-
return_dict_in_generate=True
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
-
|
171 |
-
|
172 |
-
|
|
|
173 |
|
174 |
-
|
175 |
-
**encoded_input,
|
176 |
-
do_sample=generation_config.do_sample,
|
177 |
-
max_new_tokens=generation_config.max_new_tokens,
|
178 |
-
temperature=generation_config.temperature,
|
179 |
-
top_p=generation_config.top_p,
|
180 |
-
top_k=generation_config.top_k,
|
181 |
-
repetition_penalty=generation_config.repetition_penalty,
|
182 |
-
num_return_sequences=generation_config.num_return_sequences,
|
183 |
-
stopping_criteria=stopping_criteria,
|
184 |
-
output_scores=True,
|
185 |
-
return_dict_in_generate=True
|
186 |
-
)
|
187 |
|
188 |
@app.post("/generate-image")
|
189 |
async def generate_image(request: GenerateRequest):
|
190 |
try:
|
191 |
validated_body = request
|
192 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
193 |
-
|
194 |
-
image_generator = pipeline("text-to-image",
|
|
|
|
|
195 |
image = image_generator(validated_body.input_text)[0]
|
196 |
|
197 |
img_byte_arr = BytesIO()
|
@@ -199,17 +217,20 @@ async def generate_image(request: GenerateRequest):
|
|
199 |
img_byte_arr.seek(0)
|
200 |
|
201 |
return StreamingResponse(img_byte_arr, media_type="image/png")
|
202 |
-
|
203 |
except Exception as e:
|
204 |
-
raise HTTPException(status_code=500,
|
205 |
-
|
|
|
206 |
@app.post("/generate-text-to-speech")
|
207 |
async def generate_text_to_speech(request: GenerateRequest):
|
208 |
try:
|
209 |
validated_body = request
|
210 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
211 |
|
212 |
-
audio_generator = pipeline("text-to-speech",
|
|
|
|
|
213 |
audio = audio_generator(validated_body.input_text)[0]
|
214 |
|
215 |
audio_byte_arr = BytesIO()
|
@@ -219,24 +240,29 @@ async def generate_text_to_speech(request: GenerateRequest):
|
|
219 |
return StreamingResponse(audio_byte_arr, media_type="audio/wav")
|
220 |
|
221 |
except Exception as e:
|
222 |
-
|
|
|
223 |
|
224 |
@app.post("/generate-video")
|
225 |
async def generate_video(request: GenerateRequest):
|
226 |
try:
|
227 |
validated_body = request
|
228 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
229 |
-
video_generator = pipeline("text-to-video",
|
|
|
|
|
230 |
video = video_generator(validated_body.input_text)[0]
|
231 |
|
232 |
video_byte_arr = BytesIO()
|
233 |
video.save(video_byte_arr)
|
234 |
video_byte_arr.seek(0)
|
235 |
|
236 |
-
return StreamingResponse(video_byte_arr,
|
237 |
-
|
|
|
238 |
except Exception as e:
|
239 |
-
|
|
|
240 |
|
241 |
if __name__ == "__main__":
|
242 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
+
from fastapi import FastAPI
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
from pydantic import BaseModel, field_validator
|
6 |
from transformers import (
|
|
|
23 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
24 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
25 |
|
26 |
+
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,
|
27 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
28 |
+
region_name=AWS_REGION)
|
29 |
|
30 |
app = FastAPI()
|
31 |
|
|
|
90 |
return model, tokenizer
|
91 |
except Exception as e:
|
92 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
93 |
+
|
94 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
95 |
|
96 |
@app.post("/generate")
|
|
|
125 |
)
|
126 |
|
127 |
return StreamingResponse(
|
128 |
+
stream_text(model, tokenizer, input_text,
|
129 |
+
generation_config, stop_sequences,
|
130 |
+
device, chunk_delay),
|
131 |
media_type="text/plain"
|
132 |
)
|
133 |
+
|
134 |
except Exception as e:
|
135 |
+
raise HTTPException(status_code=500,
|
136 |
+
detail=f"Internal server error: {str(e)}")
|
137 |
+
|
138 |
|
139 |
+
async def stream_text(model, tokenizer, input_text,
|
140 |
+
generation_config, stop_sequences,
|
141 |
+
device, chunk_delay, max_length=2048):
|
142 |
+
encoded_input = tokenizer(input_text,
|
143 |
+
return_tensors="pt",
|
144 |
+
truncation=True,
|
145 |
+
max_length=max_length).to(device)
|
146 |
input_length = encoded_input["input_ids"].shape[1]
|
147 |
remaining_tokens = max_length - input_length
|
148 |
|
149 |
if remaining_tokens <= 0:
|
150 |
yield ""
|
151 |
|
152 |
+
generation_config.max_new_tokens = min(
|
153 |
+
remaining_tokens, generation_config.max_new_tokens
|
154 |
+
)
|
155 |
+
|
156 |
+
def find_stop(output_text, stop_sequences):
|
157 |
+
for seq in stop_sequences:
|
158 |
+
if seq in output_text:
|
159 |
+
last_index = output_text.rfind(seq)
|
160 |
+
return last_index + len(seq)
|
161 |
|
162 |
+
return -1
|
163 |
|
164 |
+
|
165 |
output_text = ""
|
166 |
+
|
167 |
+
while True:
|
168 |
+
outputs = model.generate(
|
169 |
**encoded_input,
|
170 |
do_sample=generation_config.do_sample,
|
171 |
max_new_tokens=generation_config.max_new_tokens,
|
|
|
174 |
top_k=generation_config.top_k,
|
175 |
repetition_penalty=generation_config.repetition_penalty,
|
176 |
num_return_sequences=generation_config.num_return_sequences,
|
|
|
177 |
output_scores=True,
|
178 |
+
return_dict_in_generate=True,
|
179 |
+
)
|
180 |
+
|
181 |
+
new_text = tokenizer.decode(outputs.sequences[0][len(encoded_input["input_ids"][0]):], skip_special_tokens=True)
|
182 |
+
|
183 |
+
output_text += new_text
|
184 |
+
|
185 |
+
yield new_text
|
186 |
+
await asyncio.sleep(chunk_delay)
|
187 |
+
|
188 |
+
|
189 |
+
stop_index = find_stop(output_text, stop_sequences)
|
190 |
+
if stop_index != -1:
|
191 |
+
yield output_text[:stop_index]
|
192 |
+
break
|
193 |
+
|
194 |
+
if len(output_text) >= generation_config.max_new_tokens:
|
195 |
+
break
|
196 |
|
197 |
+
encoded_input = tokenizer(output_text,
|
198 |
+
return_tensors="pt",
|
199 |
+
truncation=True,
|
200 |
+
max_length=max_length).to(device)
|
201 |
|
202 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
@app.post("/generate-image")
|
205 |
async def generate_image(request: GenerateRequest):
|
206 |
try:
|
207 |
validated_body = request
|
208 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
209 |
+
|
210 |
+
image_generator = pipeline("text-to-image",
|
211 |
+
model=validated_body.model_name,
|
212 |
+
device=device)
|
213 |
image = image_generator(validated_body.input_text)[0]
|
214 |
|
215 |
img_byte_arr = BytesIO()
|
|
|
217 |
img_byte_arr.seek(0)
|
218 |
|
219 |
return StreamingResponse(img_byte_arr, media_type="image/png")
|
220 |
+
|
221 |
except Exception as e:
|
222 |
+
raise HTTPException(status_code=500,
|
223 |
+
detail=f"Internal server error: {str(e)}")
|
224 |
+
|
225 |
@app.post("/generate-text-to-speech")
|
226 |
async def generate_text_to_speech(request: GenerateRequest):
|
227 |
try:
|
228 |
validated_body = request
|
229 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
230 |
|
231 |
+
audio_generator = pipeline("text-to-speech",
|
232 |
+
model=validated_body.model_name,
|
233 |
+
device=device)
|
234 |
audio = audio_generator(validated_body.input_text)[0]
|
235 |
|
236 |
audio_byte_arr = BytesIO()
|
|
|
240 |
return StreamingResponse(audio_byte_arr, media_type="audio/wav")
|
241 |
|
242 |
except Exception as e:
|
243 |
+
raise HTTPException(status_code=500,
|
244 |
+
detail=f"Internal server error: {str(e)}")
|
245 |
|
246 |
@app.post("/generate-video")
|
247 |
async def generate_video(request: GenerateRequest):
|
248 |
try:
|
249 |
validated_body = request
|
250 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
251 |
+
video_generator = pipeline("text-to-video",
|
252 |
+
model=validated_body.model_name,
|
253 |
+
device=device)
|
254 |
video = video_generator(validated_body.input_text)[0]
|
255 |
|
256 |
video_byte_arr = BytesIO()
|
257 |
video.save(video_byte_arr)
|
258 |
video_byte_arr.seek(0)
|
259 |
|
260 |
+
return StreamingResponse(video_byte_arr,
|
261 |
+
media_type="video/mp4")
|
262 |
+
|
263 |
except Exception as e:
|
264 |
+
raise HTTPException(status_code=500,
|
265 |
+
detail=f"Internal server error: {str(e)}")
|
266 |
|
267 |
if __name__ == "__main__":
|
268 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|