Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,17 @@
|
|
1 |
import os
|
2 |
import logging
|
3 |
-
import
|
|
|
4 |
from io import BytesIO
|
5 |
-
from
|
6 |
-
|
7 |
-
from fastapi import FastAPI, HTTPException, Response, Request, UploadFile, File
|
8 |
from fastapi.responses import StreamingResponse
|
9 |
-
from pydantic import BaseModel
|
10 |
from transformers import (
|
11 |
AutoConfig,
|
12 |
AutoModelForCausalLM,
|
13 |
AutoTokenizer,
|
14 |
pipeline,
|
15 |
-
GenerationConfig
|
16 |
-
StoppingCriteriaList
|
17 |
)
|
18 |
import boto3
|
19 |
from huggingface_hub import hf_hub_download
|
@@ -21,8 +19,9 @@ import soundfile as sf
|
|
21 |
import numpy as np
|
22 |
import torch
|
23 |
import uvicorn
|
|
|
24 |
|
25 |
-
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(
|
26 |
|
27 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
28 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
@@ -32,7 +31,7 @@ HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
|
32 |
|
33 |
class GenerateRequest(BaseModel):
|
34 |
model_name: str
|
35 |
-
input_text: str
|
36 |
task_type: str
|
37 |
temperature: float = 1.0
|
38 |
max_new_tokens: int = 200
|
@@ -42,23 +41,6 @@ class GenerateRequest(BaseModel):
|
|
42 |
repetition_penalty: float = 1.0
|
43 |
num_return_sequences: int = 1
|
44 |
do_sample: bool = True
|
45 |
-
chunk_delay: float = 0.0
|
46 |
-
stop_sequences: list[str] = []
|
47 |
-
|
48 |
-
model_config = {"protected_namespaces": ()}
|
49 |
-
|
50 |
-
@field_validator("model_name")
|
51 |
-
def model_name_cannot_be_empty(cls, v):
|
52 |
-
if not v:
|
53 |
-
raise ValueError("model_name cannot be empty.")
|
54 |
-
return v
|
55 |
-
|
56 |
-
@field_validator("task_type")
|
57 |
-
def task_type_must_be_valid(cls, v):
|
58 |
-
valid_types = ["text-to-text", "text-to-image", "text-to-speech", "text-to-video"]
|
59 |
-
if v not in valid_types:
|
60 |
-
raise ValueError(f"task_type must be one of: {valid_types}")
|
61 |
-
return v
|
62 |
|
63 |
class S3ModelLoader:
|
64 |
def __init__(self, bucket_name, s3_client):
|
@@ -67,39 +49,50 @@ class S3ModelLoader:
|
|
67 |
|
68 |
def _get_s3_uri(self, model_name):
|
69 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
70 |
-
|
71 |
-
|
72 |
-
s3_uri = self._get_s3_uri(model_name)
|
73 |
try:
|
74 |
logging.info(f"Trying to load {model_name} from S3...")
|
75 |
-
config = AutoConfig.from_pretrained(
|
76 |
-
model = AutoModelForCausalLM.from_pretrained(
|
77 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
return model, tokenizer
|
84 |
-
except
|
85 |
-
logging.
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
tokenizer.save_pretrained(s3_uri)
|
98 |
-
logging.info(f"Saved {model_name} to S3 successfully.")
|
99 |
-
return model, tokenizer
|
100 |
-
except Exception as e:
|
101 |
-
logging.exception(f"Error downloading/uploading model: {e}")
|
102 |
-
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
103 |
|
104 |
app = FastAPI()
|
105 |
|
@@ -109,49 +102,44 @@ model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
|
109 |
@app.post("/generate")
|
110 |
async def generate(request: Request, body: GenerateRequest):
|
111 |
try:
|
112 |
-
|
113 |
-
model, tokenizer = await model_loader.load_model_and_tokenizer(validated_body.model_name)
|
114 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
115 |
model.to(device)
|
116 |
|
117 |
-
if
|
118 |
generation_config = GenerationConfig(
|
119 |
-
temperature=
|
120 |
-
max_new_tokens=
|
121 |
-
top_p=
|
122 |
-
top_k=
|
123 |
-
repetition_penalty=
|
124 |
-
do_sample=
|
125 |
-
num_return_sequences=
|
126 |
)
|
127 |
|
128 |
async def stream_text():
|
129 |
-
input_text =
|
130 |
-
generated_text = ""
|
131 |
max_length = model.config.max_position_embeddings
|
|
|
132 |
|
133 |
while True:
|
134 |
-
|
135 |
-
input_length =
|
136 |
remaining_tokens = max_length - input_length
|
|
|
|
|
|
|
|
|
137 |
|
138 |
-
|
139 |
-
break
|
140 |
-
|
141 |
-
generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)
|
142 |
-
|
143 |
-
stopping_criteria = StoppingCriteriaList(
|
144 |
-
[lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
|
145 |
-
)
|
146 |
-
|
147 |
-
output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
|
148 |
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
|
149 |
generated_text += chunk
|
150 |
yield chunk
|
151 |
-
|
152 |
-
|
|
|
153 |
|
154 |
-
if
|
155 |
return StreamingResponse(stream_text(), media_type="text/plain")
|
156 |
else:
|
157 |
generated_text = ""
|
@@ -159,24 +147,24 @@ async def generate(request: Request, body: GenerateRequest):
|
|
159 |
generated_text += chunk
|
160 |
return {"result": generated_text}
|
161 |
|
162 |
-
elif
|
163 |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
|
164 |
-
image = generator(
|
165 |
image_bytes = image.tobytes()
|
166 |
return Response(content=image_bytes, media_type="image/png")
|
167 |
|
168 |
-
elif
|
169 |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
|
170 |
-
audio = generator(
|
171 |
audio_bytesio = BytesIO()
|
172 |
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
|
173 |
audio_bytes = audio_bytesio.getvalue()
|
174 |
return Response(content=audio_bytes, media_type="audio/wav")
|
175 |
|
176 |
-
elif
|
177 |
try:
|
178 |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
|
179 |
-
video = generator(
|
180 |
return Response(content=video, media_type="video/mp4")
|
181 |
except Exception as e:
|
182 |
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
|
@@ -186,12 +174,31 @@ async def generate(request: Request, body: GenerateRequest):
|
|
186 |
|
187 |
except HTTPException as e:
|
188 |
raise e
|
189 |
-
except ValidationError as e:
|
190 |
-
raise HTTPException(status_code=422, detail=e.errors())
|
191 |
except Exception as e:
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
|
|
|
|
|
|
195 |
|
196 |
if __name__ == "__main__":
|
197 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
|
|
1 |
import os
|
2 |
import logging
|
3 |
+
import requests
|
4 |
+
import threading
|
5 |
from io import BytesIO
|
6 |
+
from fastapi import FastAPI, HTTPException, Response, Request
|
|
|
|
|
7 |
from fastapi.responses import StreamingResponse
|
8 |
+
from pydantic import BaseModel
|
9 |
from transformers import (
|
10 |
AutoConfig,
|
11 |
AutoModelForCausalLM,
|
12 |
AutoTokenizer,
|
13 |
pipeline,
|
14 |
+
GenerationConfig
|
|
|
15 |
)
|
16 |
import boto3
|
17 |
from huggingface_hub import hf_hub_download
|
|
|
19 |
import numpy as np
|
20 |
import torch
|
21 |
import uvicorn
|
22 |
+
from tqdm import tqdm
|
23 |
|
24 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
25 |
|
26 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
27 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
|
31 |
|
32 |
class GenerateRequest(BaseModel):
|
33 |
model_name: str
|
34 |
+
input_text: str
|
35 |
task_type: str
|
36 |
temperature: float = 1.0
|
37 |
max_new_tokens: int = 200
|
|
|
41 |
repetition_penalty: float = 1.0
|
42 |
num_return_sequences: int = 1
|
43 |
do_sample: bool = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
class S3ModelLoader:
|
46 |
def __init__(self, bucket_name, s3_client):
|
|
|
49 |
|
50 |
def _get_s3_uri(self, model_name):
|
51 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
52 |
+
|
53 |
+
def download_model_from_s3(self, model_name):
|
|
|
54 |
try:
|
55 |
logging.info(f"Trying to load {model_name} from S3...")
|
56 |
+
config = AutoConfig.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
|
57 |
+
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config)
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
|
59 |
+
logging.info(f"Loaded {model_name} from S3 successfully.")
|
60 |
+
return model, tokenizer
|
61 |
+
except Exception as e:
|
62 |
+
logging.error(f"Error loading {model_name} from S3: {e}")
|
63 |
+
return None, None
|
64 |
|
65 |
+
async def load_model_and_tokenizer(self, model_name):
|
66 |
+
try:
|
67 |
+
model, tokenizer = self.download_model_from_s3(model_name)
|
68 |
+
if model is None or tokenizer is None:
|
69 |
+
model, tokenizer = await self.download_and_save_model_from_huggingface(model_name)
|
70 |
+
return model, tokenizer
|
71 |
+
except Exception as e:
|
72 |
+
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
73 |
|
74 |
+
async def download_and_save_model_from_huggingface(self, model_name):
|
75 |
+
try:
|
76 |
+
logging.info(f"Downloading {model_name} from Hugging Face...")
|
77 |
+
with tqdm(unit="B", unit_scale=True, desc=f"Downloading {model_name}") as t:
|
78 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN, _tqdm=t)
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
|
80 |
+
logging.info(f"Downloaded {model_name} successfully.")
|
81 |
+
self.upload_model_to_s3(model_name, model, tokenizer)
|
82 |
return model, tokenizer
|
83 |
+
except Exception as e:
|
84 |
+
logging.error(f"Error downloading model from Hugging Face: {e}")
|
85 |
+
raise HTTPException(status_code=500, detail=f"Error downloading model from Hugging Face: {e}")
|
86 |
+
|
87 |
+
def upload_model_to_s3(self, model_name, model, tokenizer):
|
88 |
+
try:
|
89 |
+
s3_uri = self._get_s3_uri(model_name)
|
90 |
+
model.save_pretrained(s3_uri)
|
91 |
+
tokenizer.save_pretrained(s3_uri)
|
92 |
+
logging.info(f"Saved {model_name} to S3 successfully.")
|
93 |
+
except Exception as e:
|
94 |
+
logging.error(f"Error saving {model_name} to S3: {e}")
|
95 |
+
raise HTTPException(status_code=500, detail=f"Error saving model to S3: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
app = FastAPI()
|
98 |
|
|
|
102 |
@app.post("/generate")
|
103 |
async def generate(request: Request, body: GenerateRequest):
|
104 |
try:
|
105 |
+
model, tokenizer = await model_loader.load_model_and_tokenizer(body.model_name)
|
|
|
106 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
107 |
model.to(device)
|
108 |
|
109 |
+
if body.task_type == "text-to-text":
|
110 |
generation_config = GenerationConfig(
|
111 |
+
temperature=body.temperature,
|
112 |
+
max_new_tokens=body.max_new_tokens,
|
113 |
+
top_p=body.top_p,
|
114 |
+
top_k=body.top_k,
|
115 |
+
repetition_penalty=body.repetition_penalty,
|
116 |
+
do_sample=body.do_sample,
|
117 |
+
num_return_sequences=body.num_return_sequences
|
118 |
)
|
119 |
|
120 |
async def stream_text():
|
121 |
+
input_text = body.input_text
|
|
|
122 |
max_length = model.config.max_position_embeddings
|
123 |
+
generated_text = ""
|
124 |
|
125 |
while True:
|
126 |
+
inputs = tokenizer(input_text, return_tensors="pt").to(device)
|
127 |
+
input_length = inputs.input_ids.shape[1]
|
128 |
remaining_tokens = max_length - input_length
|
129 |
+
if remaining_tokens < body.max_new_tokens:
|
130 |
+
generation_config.max_new_tokens = remaining_tokens
|
131 |
+
if remaining_tokens <= 0:
|
132 |
+
break
|
133 |
|
134 |
+
output = model.generate(**inputs, generation_config=generation_config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
|
136 |
generated_text += chunk
|
137 |
yield chunk
|
138 |
+
if len(tokenizer.encode(generated_text)) >= max_length:
|
139 |
+
break
|
140 |
+
input_text = chunk
|
141 |
|
142 |
+
if body.stream:
|
143 |
return StreamingResponse(stream_text(), media_type="text/plain")
|
144 |
else:
|
145 |
generated_text = ""
|
|
|
147 |
generated_text += chunk
|
148 |
return {"result": generated_text}
|
149 |
|
150 |
+
elif body.task_type == "text-to-image":
|
151 |
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
|
152 |
+
image = generator(body.input_text)[0]
|
153 |
image_bytes = image.tobytes()
|
154 |
return Response(content=image_bytes, media_type="image/png")
|
155 |
|
156 |
+
elif body.task_type == "text-to-speech":
|
157 |
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
|
158 |
+
audio = generator(body.input_text)
|
159 |
audio_bytesio = BytesIO()
|
160 |
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
|
161 |
audio_bytes = audio_bytesio.getvalue()
|
162 |
return Response(content=audio_bytes, media_type="audio/wav")
|
163 |
|
164 |
+
elif body.task_type == "text-to-video":
|
165 |
try:
|
166 |
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
|
167 |
+
video = generator(body.input_text)
|
168 |
return Response(content=video, media_type="video/mp4")
|
169 |
except Exception as e:
|
170 |
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
|
|
|
174 |
|
175 |
except HTTPException as e:
|
176 |
raise e
|
|
|
|
|
177 |
except Exception as e:
|
178 |
+
raise HTTPException(status_code=500, detail=str(e))
|
179 |
+
|
180 |
+
def download_all_models_in_background():
|
181 |
+
models_url = "https://huggingface.co/api/models"
|
182 |
+
try:
|
183 |
+
response = requests.get(models_url)
|
184 |
+
if response.status_code != 200:
|
185 |
+
logging.error("Error al obtener la lista de modelos de Hugging Face.")
|
186 |
+
raise HTTPException(status_code=500, detail="Error al obtener la lista de modelos.")
|
187 |
+
|
188 |
+
models = response.json()
|
189 |
+
for model in models:
|
190 |
+
model_name = model["id"]
|
191 |
+
model_loader.download_and_save_model_from_huggingface(model_name)
|
192 |
+
except Exception as e:
|
193 |
+
logging.error(f"Error al descargar modelos en segundo plano: {e}")
|
194 |
+
raise HTTPException(status_code=500, detail="Error al descargar modelos en segundo plano.")
|
195 |
+
|
196 |
+
def run_in_background():
|
197 |
+
threading.Thread(target=download_all_models_in_background, daemon=True).start()
|
198 |
|
199 |
+
@app.on_event("startup")
|
200 |
+
async def startup_event():
|
201 |
+
run_in_background()
|
202 |
|
203 |
if __name__ == "__main__":
|
204 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|