Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -42,7 +42,7 @@ class GenerateRequest(BaseModel):
|
|
42 |
input_text: str = ""
|
43 |
task_type: str
|
44 |
temperature: float = 1.0
|
45 |
-
max_new_tokens: int =
|
46 |
stream: bool = True
|
47 |
top_p: float = 1.0
|
48 |
top_k: int = 50
|
@@ -146,7 +146,7 @@ async def generate(request: GenerateRequest):
|
|
146 |
input_text = request.input_text
|
147 |
task_type = request.task_type
|
148 |
temperature = request.temperature
|
149 |
-
max_new_tokens = request.max_new_tokens
|
150 |
stream = request.stream
|
151 |
top_p = request.top_p
|
152 |
top_k = request.top_k
|
@@ -162,7 +162,7 @@ async def generate(request: GenerateRequest):
|
|
162 |
if "text-to-text" == task_type:
|
163 |
generation_config = GenerationConfig(
|
164 |
temperature=temperature,
|
165 |
-
max_new_tokens=
|
166 |
top_p=top_p,
|
167 |
top_k=top_k,
|
168 |
repetition_penalty=repetition_penalty,
|
@@ -173,7 +173,7 @@ async def generate(request: GenerateRequest):
|
|
173 |
return StreamingResponse(
|
174 |
stream_text(model, tokenizer, input_text,
|
175 |
generation_config, stop_sequences,
|
176 |
-
device
|
177 |
media_type="text/plain"
|
178 |
)
|
179 |
else:
|
@@ -187,21 +187,14 @@ async def generate(request: GenerateRequest):
|
|
187 |
|
188 |
async def stream_text(model, tokenizer, input_text,
|
189 |
generation_config, stop_sequences,
|
190 |
-
device
|
|
|
|
|
191 |
encoded_input = tokenizer(
|
192 |
input_text, return_tensors="pt",
|
193 |
truncation=True, max_length=max_length
|
194 |
).to(device)
|
195 |
-
input_length = encoded_input["input_ids"].shape[1]
|
196 |
-
remaining_tokens = max_length - input_length
|
197 |
-
|
198 |
-
if remaining_tokens <= 0:
|
199 |
-
yield ""
|
200 |
|
201 |
-
generation_config.max_new_tokens = min(
|
202 |
-
remaining_tokens, generation_config.max_new_tokens
|
203 |
-
)
|
204 |
-
|
205 |
|
206 |
def find_stop(output_text, stop_sequences):
|
207 |
for seq in stop_sequences:
|
@@ -210,10 +203,21 @@ async def stream_text(model, tokenizer, input_text,
|
|
210 |
return last_index + len(seq)
|
211 |
|
212 |
return -1
|
213 |
-
|
214 |
output_text = ""
|
215 |
-
|
216 |
while True:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
outputs = model.generate(
|
218 |
**encoded_input,
|
219 |
do_sample=generation_config.do_sample,
|
@@ -231,7 +235,7 @@ async def stream_text(model, tokenizer, input_text,
|
|
231 |
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
|
232 |
skip_special_tokens=True
|
233 |
)
|
234 |
-
|
235 |
output_text += new_text
|
236 |
|
237 |
stop_index = find_stop(output_text, stop_sequences)
|
@@ -244,26 +248,30 @@ async def stream_text(model, tokenizer, input_text,
|
|
244 |
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
245 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
246 |
break
|
247 |
-
|
248 |
else:
|
249 |
for chunk in [new_text[i:i+10] for i in range(0, len(new_text), 10)]:
|
250 |
for text in chunk.split():
|
251 |
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
|
255 |
-
|
256 |
for chunk in [output_text[i:i+10] for i in range(0, len(output_text), 10)]:
|
257 |
for text in chunk.split():
|
258 |
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
259 |
-
|
260 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
261 |
break
|
262 |
-
|
263 |
-
encoded_input = tokenizer(
|
264 |
-
output_text, return_tensors="pt",
|
265 |
-
truncation=True, max_length=max_length
|
266 |
-
).to(device)
|
267 |
|
268 |
@app.post("/generate-image")
|
269 |
async def generate_image(request: GenerateRequest):
|
|
|
42 |
input_text: str = ""
|
43 |
task_type: str
|
44 |
temperature: float = 1.0
|
45 |
+
max_new_tokens: int = 10
|
46 |
stream: bool = True
|
47 |
top_p: float = 1.0
|
48 |
top_k: int = 50
|
|
|
146 |
input_text = request.input_text
|
147 |
task_type = request.task_type
|
148 |
temperature = request.temperature
|
149 |
+
max_new_tokens = request.max_new_tokens
|
150 |
stream = request.stream
|
151 |
top_p = request.top_p
|
152 |
top_k = request.top_k
|
|
|
162 |
if "text-to-text" == task_type:
|
163 |
generation_config = GenerationConfig(
|
164 |
temperature=temperature,
|
165 |
+
max_new_tokens=max_new_tokens,
|
166 |
top_p=top_p,
|
167 |
top_k=top_k,
|
168 |
repetition_penalty=repetition_penalty,
|
|
|
173 |
return StreamingResponse(
|
174 |
stream_text(model, tokenizer, input_text,
|
175 |
generation_config, stop_sequences,
|
176 |
+
device),
|
177 |
media_type="text/plain"
|
178 |
)
|
179 |
else:
|
|
|
187 |
|
188 |
async def stream_text(model, tokenizer, input_text,
|
189 |
generation_config, stop_sequences,
|
190 |
+
device):
|
191 |
+
max_length=10 #Define the max length to cut the text and generate another response
|
192 |
+
|
193 |
encoded_input = tokenizer(
|
194 |
input_text, return_tensors="pt",
|
195 |
truncation=True, max_length=max_length
|
196 |
).to(device)
|
|
|
|
|
|
|
|
|
|
|
197 |
|
|
|
|
|
|
|
|
|
198 |
|
199 |
def find_stop(output_text, stop_sequences):
|
200 |
for seq in stop_sequences:
|
|
|
203 |
return last_index + len(seq)
|
204 |
|
205 |
return -1
|
206 |
+
|
207 |
output_text = ""
|
|
|
208 |
while True:
|
209 |
+
|
210 |
+
input_length = encoded_input["input_ids"].shape[1]
|
211 |
+
remaining_tokens = max_length - input_length
|
212 |
+
|
213 |
+
if remaining_tokens <=0:
|
214 |
+
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
215 |
+
break
|
216 |
+
|
217 |
+
generation_config.max_new_tokens = min(
|
218 |
+
remaining_tokens, generation_config.max_new_tokens
|
219 |
+
)
|
220 |
+
|
221 |
outputs = model.generate(
|
222 |
**encoded_input,
|
223 |
do_sample=generation_config.do_sample,
|
|
|
235 |
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
|
236 |
skip_special_tokens=True
|
237 |
)
|
238 |
+
|
239 |
output_text += new_text
|
240 |
|
241 |
stop_index = find_stop(output_text, stop_sequences)
|
|
|
248 |
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
249 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
250 |
break
|
|
|
251 |
else:
|
252 |
for chunk in [new_text[i:i+10] for i in range(0, len(new_text), 10)]:
|
253 |
for text in chunk.split():
|
254 |
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
255 |
|
256 |
+
|
257 |
+
if len(output_text) >= max_length:
|
258 |
+
|
259 |
+
encoded_input = tokenizer(
|
260 |
+
output_text, return_tensors="pt",
|
261 |
+
truncation=True, max_length=max_length
|
262 |
+
).to(device)
|
263 |
+
|
264 |
+
output_text = ""
|
265 |
|
266 |
+
elif len(output_text) < max_length and len(new_text) == 0:
|
267 |
+
|
268 |
for chunk in [output_text[i:i+10] for i in range(0, len(output_text), 10)]:
|
269 |
for text in chunk.split():
|
270 |
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
271 |
+
|
272 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
273 |
break
|
274 |
+
|
|
|
|
|
|
|
|
|
275 |
|
276 |
@app.post("/generate-image")
|
277 |
async def generate_image(request: GenerateRequest):
|