Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,20 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import boto3
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
7 |
from huggingface_hub import hf_hub_download
|
|
|
|
|
8 |
import asyncio
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
12 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
13 |
AWS_REGION = os.getenv("AWS_REGION")
|
@@ -16,7 +23,6 @@ HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
|
16 |
|
17 |
MAX_TOKENS = 1024
|
18 |
|
19 |
-
# Configuraci贸n de cliente S3
|
20 |
s3_client = boto3.client(
|
21 |
's3',
|
22 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
@@ -24,135 +30,189 @@ s3_client = boto3.client(
|
|
24 |
region_name=AWS_REGION
|
25 |
)
|
26 |
|
27 |
-
# Inicializaci贸n de la app FastAPI
|
28 |
app = FastAPI()
|
29 |
|
30 |
-
# Estructura de solicitudes
|
31 |
class GenerateRequest(BaseModel):
|
32 |
model_name: str
|
33 |
input_text: str
|
34 |
task_type: str
|
35 |
|
36 |
-
|
37 |
-
class S3Manager:
|
38 |
def __init__(self, bucket_name):
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
self.bucket_name = bucket_name
|
40 |
-
self.s3_client = s3_client
|
41 |
|
42 |
-
async def
|
43 |
-
"""Descarga un archivo desde S3."""
|
44 |
loop = asyncio.get_event_loop()
|
45 |
-
return await loop.run_in_executor(None, self.
|
46 |
|
47 |
-
def
|
48 |
try:
|
49 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
50 |
return response['Body'].read()
|
51 |
except self.s3_client.exceptions.NoSuchKey:
|
52 |
-
raise HTTPException(status_code=404, detail=f"
|
53 |
except Exception as e:
|
54 |
-
raise HTTPException(status_code=500, detail=f"Error al
|
55 |
|
56 |
-
async def
|
57 |
-
"""Sube un archivo a S3."""
|
58 |
loop = asyncio.get_event_loop()
|
59 |
-
return await loop.run_in_executor(None, self.
|
60 |
|
61 |
-
def
|
62 |
try:
|
63 |
-
|
64 |
-
|
|
|
|
|
65 |
except Exception as e:
|
66 |
-
raise HTTPException(status_code=500, detail=f"Error al
|
67 |
|
68 |
-
async def
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
-
def
|
74 |
try:
|
75 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
return True
|
77 |
except self.s3_client.exceptions.ClientError:
|
78 |
return False
|
79 |
-
except Exception as e:
|
80 |
-
raise HTTPException(status_code=500, detail=f"Error al verificar existencia de {key}: {str(e)}")
|
81 |
|
82 |
-
async def
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
await self.upload_file(local_file, f"{model_name_s3}/{file}")
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
"tokenizer": f"{model_name_s3}/tokenizer.json",
|
98 |
-
"config": f"{model_name_s3}/config.json",
|
99 |
-
}
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
|
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
|
109 |
-
|
110 |
-
|
|
|
111 |
|
112 |
-
|
|
|
113 |
|
114 |
@app.post("/generate")
|
115 |
async def generate(request: GenerateRequest):
|
116 |
try:
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
# Generaci贸n seg煤n el tipo de tarea
|
130 |
-
if request.task_type == "text-to-text":
|
131 |
-
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
132 |
-
result = generator(request.input_text, max_length=MAX_TOKENS, num_return_sequences=1)
|
133 |
return {"result": result[0]["generated_text"]}
|
134 |
|
135 |
-
elif
|
136 |
-
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer)
|
137 |
-
image = generator(
|
138 |
-
return {"
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
elif
|
141 |
-
generator = pipeline("text-to-
|
142 |
-
|
143 |
-
return {"
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
video = generator(request.input_text)
|
148 |
-
return {"video": video}
|
149 |
|
150 |
except HTTPException as e:
|
151 |
raise e
|
152 |
except Exception as e:
|
153 |
-
raise HTTPException(status_code=500, detail=
|
154 |
|
155 |
if __name__ == "__main__":
|
156 |
import uvicorn
|
157 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
158 |
-
|
|
|
1 |
import os
|
2 |
+
import json
|
|
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
5 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
+
import boto3
|
8 |
+
import logging
|
9 |
import asyncio
|
10 |
|
11 |
+
logger = logging.getLogger(__name__)
|
12 |
+
logger.setLevel(logging.INFO)
|
13 |
+
console_handler = logging.StreamHandler()
|
14 |
+
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
|
15 |
+
console_handler.setFormatter(formatter)
|
16 |
+
logger.addHandler(console_handler)
|
17 |
+
|
18 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
19 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
20 |
AWS_REGION = os.getenv("AWS_REGION")
|
|
|
23 |
|
24 |
MAX_TOKENS = 1024
|
25 |
|
|
|
26 |
s3_client = boto3.client(
|
27 |
's3',
|
28 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
|
|
30 |
region_name=AWS_REGION
|
31 |
)
|
32 |
|
|
|
33 |
app = FastAPI()
|
34 |
|
|
|
35 |
class GenerateRequest(BaseModel):
|
36 |
model_name: str
|
37 |
input_text: str
|
38 |
task_type: str
|
39 |
|
40 |
+
class S3DirectStream:
|
|
|
41 |
def __init__(self, bucket_name):
|
42 |
+
self.s3_client = boto3.client(
|
43 |
+
's3',
|
44 |
+
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
45 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
46 |
+
region_name=AWS_REGION
|
47 |
+
)
|
48 |
self.bucket_name = bucket_name
|
|
|
49 |
|
50 |
+
async def stream_from_s3(self, key):
|
|
|
51 |
loop = asyncio.get_event_loop()
|
52 |
+
return await loop.run_in_executor(None, self._stream_from_s3, key)
|
53 |
|
54 |
+
def _stream_from_s3(self, key):
|
55 |
try:
|
56 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
57 |
return response['Body'].read()
|
58 |
except self.s3_client.exceptions.NoSuchKey:
|
59 |
+
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
|
60 |
except Exception as e:
|
61 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
|
62 |
|
63 |
+
async def get_model_file_parts(self, model_name):
|
|
|
64 |
loop = asyncio.get_event_loop()
|
65 |
+
return await loop.run_in_executor(None, self._get_model_file_parts, model_name)
|
66 |
|
67 |
+
def _get_model_file_parts(self, model_name):
|
68 |
try:
|
69 |
+
model_name = model_name.replace("/", "-").lower()
|
70 |
+
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name)
|
71 |
+
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']]
|
72 |
+
return model_files
|
73 |
except Exception as e:
|
74 |
+
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
|
75 |
|
76 |
+
async def load_model_from_s3(self, model_name):
|
77 |
+
try:
|
78 |
+
model_name = model_name.replace("/", "-").lower()
|
79 |
+
model_files = await self.get_model_file_parts(model_name)
|
80 |
+
|
81 |
+
if not model_files:
|
82 |
+
await self.download_and_upload_to_s3(model_name)
|
83 |
+
|
84 |
+
config_data = await self.stream_from_s3(f"{model_name}/config.json")
|
85 |
+
if not config_data:
|
86 |
+
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_name}/config.json est谩 vac铆o o no se pudo leer.")
|
87 |
+
|
88 |
+
if isinstance(config_data, bytes):
|
89 |
+
config_data = config_data.decode("utf-8")
|
90 |
+
|
91 |
+
config_json = json.loads(config_data)
|
92 |
+
|
93 |
+
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json, from_tf=False)
|
94 |
+
return model
|
95 |
+
|
96 |
+
except HTTPException as e:
|
97 |
+
raise e
|
98 |
+
except Exception as e:
|
99 |
+
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")
|
100 |
+
|
101 |
+
async def load_tokenizer_from_s3(self, model_name):
|
102 |
+
try:
|
103 |
+
model_name = model_name.replace("/", "-").lower()
|
104 |
+
tokenizer_data = await self.stream_from_s3(f"{model_name}/tokenizer.json")
|
105 |
+
|
106 |
+
if isinstance(tokenizer_data, bytes):
|
107 |
+
tokenizer_data = tokenizer_data.decode("utf-8")
|
108 |
+
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
|
110 |
+
return tokenizer
|
111 |
+
except Exception as e:
|
112 |
+
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
|
113 |
|
114 |
+
async def create_s3_folders(self, s3_key):
|
115 |
try:
|
116 |
+
folder_keys = s3_key.split('-')
|
117 |
+
for i in range(1, len(folder_keys)):
|
118 |
+
folder_key = '-'.join(folder_keys[:i]) + '/'
|
119 |
+
if not await self.file_exists_in_s3(folder_key):
|
120 |
+
logger.info(f"Creando carpeta en S3: {folder_key}")
|
121 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
|
122 |
+
|
123 |
+
except Exception as e:
|
124 |
+
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")
|
125 |
+
|
126 |
+
async def file_exists_in_s3(self, s3_key):
|
127 |
+
try:
|
128 |
+
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
|
129 |
return True
|
130 |
except self.s3_client.exceptions.ClientError:
|
131 |
return False
|
|
|
|
|
132 |
|
133 |
+
async def download_and_upload_to_s3(self, model_name, force_download=False):
|
134 |
+
try:
|
135 |
+
if force_download:
|
136 |
+
logger.info(f"Forzando la descarga del modelo {model_name} y la carga a S3.")
|
137 |
+
|
138 |
+
model_name = model_name.replace("/", "-").lower()
|
139 |
+
|
140 |
+
if not await self.file_exists_in_s3(f"{model_name}/config.json") or not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
141 |
+
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
|
142 |
+
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
|
143 |
+
|
144 |
+
await self.create_s3_folders(f"{model_name}/")
|
145 |
|
146 |
+
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
|
147 |
+
with open(config_file, "rb") as file:
|
148 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
|
|
|
149 |
|
150 |
+
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
151 |
+
with open(tokenizer_file, "rb") as file:
|
152 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
|
153 |
+
else:
|
154 |
+
logger.info(f"Los archivos del modelo {model_name} ya existen en S3. No es necesario descargarlos de nuevo.")
|
|
|
|
|
|
|
155 |
|
156 |
+
except Exception as e:
|
157 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
|
158 |
+
|
159 |
+
async def resume_download(self, model_name):
|
160 |
+
try:
|
161 |
+
logger.info(f"Reanudando la descarga del modelo {model_name} desde Hugging Face.")
|
162 |
+
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)
|
163 |
+
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)
|
164 |
|
165 |
+
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
|
166 |
+
with open(config_file, "rb") as file:
|
167 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
|
168 |
|
169 |
+
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
|
170 |
+
with open(tokenizer_file, "rb") as file:
|
171 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
|
172 |
|
173 |
+
except Exception as e:
|
174 |
+
raise HTTPException(status_code=500, detail=f"Error al reanudar la descarga del modelo: {e}")
|
175 |
|
176 |
@app.post("/generate")
|
177 |
async def generate(request: GenerateRequest):
|
178 |
try:
|
179 |
+
model_name = request.model_name
|
180 |
+
input_text = request.input_text
|
181 |
+
task_type = request.task_type
|
182 |
+
|
183 |
+
s3_direct_stream = S3DirectStream(S3_BUCKET_NAME)
|
184 |
+
|
185 |
+
model = await s3_direct_stream.load_model_from_s3(model_name)
|
186 |
+
tokenizer = await s3_direct_stream.load_tokenizer_from_s3(model_name)
|
187 |
+
|
188 |
+
if task_type == "text-to-text":
|
189 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
|
190 |
+
result = generator(input_text, max_length=MAX_TOKENS, num_return_sequences=1)
|
|
|
|
|
|
|
|
|
191 |
return {"result": result[0]["generated_text"]}
|
192 |
|
193 |
+
elif task_type == "text-to-image":
|
194 |
+
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=0)
|
195 |
+
image = generator(input_text)
|
196 |
+
return {"result": image}
|
197 |
+
|
198 |
+
elif task_type == "text-to-speech":
|
199 |
+
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=0)
|
200 |
+
audio = generator(input_text)
|
201 |
+
return {"result": audio}
|
202 |
|
203 |
+
elif task_type == "text-to-video":
|
204 |
+
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=0)
|
205 |
+
video = generator(input_text)
|
206 |
+
return {"result": video}
|
207 |
|
208 |
+
else:
|
209 |
+
raise HTTPException(status_code=400, detail="Tipo de tarea no soportada")
|
|
|
|
|
210 |
|
211 |
except HTTPException as e:
|
212 |
raise e
|
213 |
except Exception as e:
|
214 |
+
raise HTTPException(status_code=500, detail=str(e))
|
215 |
|
216 |
if __name__ == "__main__":
|
217 |
import uvicorn
|
218 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|