Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -3,15 +3,21 @@ import torch
|
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from fastapi.responses import StreamingResponse, JSONResponse
|
5 |
from pydantic import BaseModel, field_validator
|
6 |
-
from transformers import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import boto3
|
8 |
import uvicorn
|
9 |
import asyncio
|
10 |
import json
|
11 |
from huggingface_hub import login
|
12 |
from botocore.exceptions import NoCredentialsError
|
13 |
-
|
14 |
-
import base64
|
15 |
|
16 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
17 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
@@ -19,79 +25,107 @@ AWS_REGION = os.getenv("AWS_REGION")
|
|
19 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
20 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
21 |
|
|
|
22 |
if HUGGINGFACE_HUB_TOKEN:
|
23 |
-
login(token=HUGGINGFACE_HUB_TOKEN,
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,aws_secret_access_key=AWS_SECRET_ACCESS_KEY,region_name=AWS_REGION)
|
26 |
app = FastAPI()
|
27 |
|
28 |
class GenerateRequest(BaseModel):
|
29 |
model_name: str
|
30 |
input_text: str = ""
|
31 |
task_type: str
|
32 |
-
temperature: float = 0
|
33 |
-
max_new_tokens: int =
|
34 |
stream: bool = True
|
35 |
top_p: float = 1.0
|
36 |
-
top_k: int =
|
37 |
repetition_penalty: float = 1.0
|
38 |
num_return_sequences: int = 1
|
39 |
-
do_sample: bool =
|
40 |
stop_sequences: list[str] = []
|
41 |
-
|
42 |
-
use_onnx: bool = False
|
43 |
@field_validator("model_name")
|
44 |
def model_name_cannot_be_empty(cls, v):
|
45 |
if not v:
|
46 |
raise ValueError("model_name cannot be empty.")
|
47 |
return v
|
|
|
48 |
@field_validator("task_type")
|
49 |
def task_type_must_be_valid(cls, v):
|
50 |
-
valid_types = ["text-to-text", "text-to-image",
|
|
|
51 |
if v not in valid_types:
|
52 |
raise ValueError(f"task_type must be one of: {valid_types}")
|
53 |
return v
|
|
|
|
|
|
|
54 |
class S3ModelLoader:
|
55 |
def __init__(self, bucket_name, s3_client):
|
56 |
self.bucket_name = bucket_name
|
57 |
self.s3_client = s3_client
|
58 |
-
|
59 |
def _get_s3_uri(self, model_name):
|
60 |
-
return f"s3://{self.bucket_name}/
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
62 |
s3_uri = self._get_s3_uri(model_name)
|
63 |
try:
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
return model, tokenizer
|
70 |
except (EnvironmentError, NoCredentialsError):
|
71 |
try:
|
72 |
-
config = AutoConfig.from_pretrained(
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
return model, tokenizer
|
78 |
except Exception as e:
|
79 |
-
raise HTTPException(
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
async def get_model_and_tokenizer(self, model_name, quantize, use_onnx):
|
84 |
-
key = f"{model_name}-{quantize}-{use_onnx}"
|
85 |
-
if key not in self.model_cache:
|
86 |
-
model, tokenizer = await self._load_model_and_tokenizer(model_name, quantize, use_onnx)
|
87 |
-
self.model_cache[key] = {"model":model, "tokenizer":tokenizer}
|
88 |
-
return self.model_cache[key]["model"], self.model_cache[key]["tokenizer"]
|
89 |
-
async def get_pipeline(self, model_name, task_type):
|
90 |
-
if model_name not in self.model_cache:
|
91 |
-
config = AutoConfig.from_pretrained(model_name, token=HUGGINGFACE_HUB_TOKEN)
|
92 |
-
model = pipeline(task_type, model=model_name,device=self.device, config=config)
|
93 |
-
self.model_cache[model_name] = {"model":model}
|
94 |
-
return self.model_cache[model_name]["model"]
|
95 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
96 |
|
97 |
@app.post("/generate")
|
@@ -109,96 +143,243 @@ async def generate(request: GenerateRequest):
|
|
109 |
num_return_sequences = request.num_return_sequences
|
110 |
do_sample = request.do_sample
|
111 |
stop_sequences = request.stop_sequences
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
115 |
if "text-to-text" == task_type:
|
116 |
-
generation_config = GenerationConfig(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
if stream:
|
118 |
-
return StreamingResponse(
|
|
|
|
|
|
|
|
|
|
|
119 |
else:
|
120 |
-
result = await generate_text(model, tokenizer, input_text,
|
|
|
|
|
121 |
return JSONResponse({"text": result, "is_end": True})
|
122 |
else:
|
123 |
return HTTPException(status_code=400, detail="Task type not text-to-text")
|
|
|
124 |
except Exception as e:
|
125 |
-
raise HTTPException(
|
|
|
|
|
|
|
126 |
class StopOnSequences(StoppingCriteria):
|
127 |
def __init__(self, stop_sequences, tokenizer):
|
128 |
self.stop_sequences = stop_sequences
|
129 |
self.tokenizer = tokenizer
|
130 |
self.stop_ids = [tokenizer.encode(seq, add_special_tokens=False) for seq in stop_sequences]
|
|
|
131 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
|
|
132 |
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
|
|
133 |
for stop_sequence in self.stop_sequences:
|
134 |
if stop_sequence in decoded_text:
|
135 |
return True
|
136 |
return False
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
|
140 |
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
141 |
-
|
142 |
-
yield json.dumps({"text":token, "is_end": False}) + "\n"
|
143 |
-
yield json.dumps({"text":"", "is_end": True}) + "\n"
|
144 |
-
async def _stream_text(model, encoded_input, tokenizer, generation_config, stop_criteria, stopping_criteria):
|
145 |
output_text = ""
|
|
|
146 |
while True:
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
163 |
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
|
164 |
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
165 |
-
|
166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
return generated_text
|
|
|
168 |
@app.post("/generate-image")
|
169 |
async def generate_image(request: GenerateRequest):
|
170 |
try:
|
171 |
validated_body = request
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
image = model(validated_body.input_text)[0]
|
|
|
174 |
image_data = list(image.getdata())
|
|
|
175 |
return json.dumps({"image_data": image_data, "is_end": True})
|
|
|
176 |
except Exception as e:
|
177 |
-
raise HTTPException(
|
|
|
|
|
|
|
|
|
|
|
178 |
@app.post("/generate-text-to-speech")
|
179 |
async def generate_text_to_speech(request: GenerateRequest):
|
180 |
try:
|
181 |
validated_body = request
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
audio = audio_generator(validated_body.input_text)
|
|
|
|
|
184 |
audio_bytes = audio["audio"]
|
|
|
185 |
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
|
|
|
186 |
return json.dumps({"audio": audio_base64, "is_end": True})
|
|
|
187 |
except Exception as e:
|
188 |
-
raise HTTPException(
|
|
|
|
|
|
|
|
|
|
|
189 |
@app.post("/generate-video")
|
190 |
async def generate_video(request: GenerateRequest):
|
191 |
try:
|
192 |
validated_body = request
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
video = video_generator(validated_body.input_text)
|
|
|
|
|
195 |
video_base64 = base64.b64encode(video).decode('utf-8')
|
|
|
196 |
return json.dumps({"video": video_base64, "is_end": True})
|
|
|
197 |
except Exception as e:
|
198 |
-
raise HTTPException(
|
199 |
-
|
200 |
-
|
|
|
|
|
201 |
if __name__ == "__main__":
|
202 |
-
import asyncio
|
203 |
-
asyncio.run(load_all_models())
|
204 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from fastapi.responses import StreamingResponse, JSONResponse
|
5 |
from pydantic import BaseModel, field_validator
|
6 |
+
from transformers import (
|
7 |
+
AutoConfig,
|
8 |
+
AutoModelForCausalLM,
|
9 |
+
AutoTokenizer,
|
10 |
+
GenerationConfig,
|
11 |
+
StoppingCriteria,
|
12 |
+
StoppingCriteriaList,
|
13 |
+
)
|
14 |
import boto3
|
15 |
import uvicorn
|
16 |
import asyncio
|
17 |
import json
|
18 |
from huggingface_hub import login
|
19 |
from botocore.exceptions import NoCredentialsError
|
20 |
+
|
|
|
21 |
|
22 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
23 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
|
25 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
26 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
27 |
|
28 |
+
|
29 |
if HUGGINGFACE_HUB_TOKEN:
|
30 |
+
login(token=HUGGINGFACE_HUB_TOKEN,
|
31 |
+
add_to_git_credential=False)
|
32 |
+
|
33 |
+
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,
|
34 |
+
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
35 |
+
region_name=AWS_REGION)
|
36 |
|
|
|
37 |
app = FastAPI()
|
38 |
|
39 |
class GenerateRequest(BaseModel):
|
40 |
model_name: str
|
41 |
input_text: str = ""
|
42 |
task_type: str
|
43 |
+
temperature: float = 1.0
|
44 |
+
max_new_tokens: int = 3
|
45 |
stream: bool = True
|
46 |
top_p: float = 1.0
|
47 |
+
top_k: int = 50
|
48 |
repetition_penalty: float = 1.0
|
49 |
num_return_sequences: int = 1
|
50 |
+
do_sample: bool = True
|
51 |
stop_sequences: list[str] = []
|
52 |
+
|
|
|
53 |
@field_validator("model_name")
|
54 |
def model_name_cannot_be_empty(cls, v):
|
55 |
if not v:
|
56 |
raise ValueError("model_name cannot be empty.")
|
57 |
return v
|
58 |
+
|
59 |
@field_validator("task_type")
|
60 |
def task_type_must_be_valid(cls, v):
|
61 |
+
valid_types = ["text-to-text", "text-to-image",
|
62 |
+
"text-to-speech", "text-to-video"]
|
63 |
if v not in valid_types:
|
64 |
raise ValueError(f"task_type must be one of: {valid_types}")
|
65 |
return v
|
66 |
+
|
67 |
+
model_data = {} # Global dictionary to store model data
|
68 |
+
|
69 |
class S3ModelLoader:
|
70 |
def __init__(self, bucket_name, s3_client):
|
71 |
self.bucket_name = bucket_name
|
72 |
self.s3_client = s3_client
|
73 |
+
|
74 |
def _get_s3_uri(self, model_name):
|
75 |
+
return f"s3://{self.bucket_name}/" \
|
76 |
+
f"{model_name.replace('/', '-')}"
|
77 |
+
|
78 |
+
async def load_model_and_tokenizer(self, model_name):
|
79 |
+
if model_name in model_data:
|
80 |
+
return model_data[model_name]["model"], model_data[model_name]["tokenizer"]
|
81 |
+
|
82 |
s3_uri = self._get_s3_uri(model_name)
|
83 |
try:
|
84 |
+
|
85 |
+
config = AutoConfig.from_pretrained(
|
86 |
+
s3_uri, local_files_only=False
|
87 |
+
)
|
88 |
+
|
89 |
+
model = AutoModelForCausalLM.from_pretrained(
|
90 |
+
s3_uri, config=config, local_files_only=False
|
91 |
+
)
|
92 |
+
|
93 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
94 |
+
s3_uri, config=config, local_files_only=False
|
95 |
+
)
|
96 |
+
|
97 |
+
if tokenizer.eos_token_id is not None and \
|
98 |
+
tokenizer.pad_token_id is None:
|
99 |
+
tokenizer.pad_token_id = config.pad_token_id \
|
100 |
+
or tokenizer.eos_token_id
|
101 |
+
model_data[model_name] = {"model":model, "tokenizer":tokenizer}
|
102 |
return model, tokenizer
|
103 |
except (EnvironmentError, NoCredentialsError):
|
104 |
try:
|
105 |
+
config = AutoConfig.from_pretrained(
|
106 |
+
model_name, token=HUGGINGFACE_HUB_TOKEN
|
107 |
+
)
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
109 |
+
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
110 |
+
)
|
111 |
+
|
112 |
+
model = AutoModelForCausalLM.from_pretrained(
|
113 |
+
model_name, config=config, token=HUGGINGFACE_HUB_TOKEN
|
114 |
+
)
|
115 |
+
|
116 |
+
|
117 |
+
if tokenizer.eos_token_id is not None and \
|
118 |
+
tokenizer.pad_token_id is None:
|
119 |
+
tokenizer.pad_token_id = config.pad_token_id \
|
120 |
+
or tokenizer.eos_token_id
|
121 |
+
|
122 |
+
model_data[model_name] = {"model":model, "tokenizer":tokenizer}
|
123 |
return model, tokenizer
|
124 |
except Exception as e:
|
125 |
+
raise HTTPException(
|
126 |
+
status_code=500, detail=f"Error loading model: {e}"
|
127 |
+
)
|
128 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
130 |
|
131 |
@app.post("/generate")
|
|
|
143 |
num_return_sequences = request.num_return_sequences
|
144 |
do_sample = request.do_sample
|
145 |
stop_sequences = request.stop_sequences
|
146 |
+
|
147 |
+
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
|
148 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
149 |
+
model.to(device)
|
150 |
+
|
151 |
if "text-to-text" == task_type:
|
152 |
+
generation_config = GenerationConfig(
|
153 |
+
temperature=temperature,
|
154 |
+
max_new_tokens=max_new_tokens,
|
155 |
+
top_p=top_p,
|
156 |
+
top_k=top_k,
|
157 |
+
repetition_penalty=repetition_penalty,
|
158 |
+
do_sample=do_sample,
|
159 |
+
num_return_sequences=num_return_sequences,
|
160 |
+
eos_token_id = tokenizer.eos_token_id
|
161 |
+
)
|
162 |
if stream:
|
163 |
+
return StreamingResponse(
|
164 |
+
stream_text(model, tokenizer, input_text,
|
165 |
+
generation_config, stop_sequences,
|
166 |
+
device),
|
167 |
+
media_type="text/plain"
|
168 |
+
)
|
169 |
else:
|
170 |
+
result = await generate_text(model, tokenizer, input_text,
|
171 |
+
generation_config, stop_sequences,
|
172 |
+
device)
|
173 |
return JSONResponse({"text": result, "is_end": True})
|
174 |
else:
|
175 |
return HTTPException(status_code=400, detail="Task type not text-to-text")
|
176 |
+
|
177 |
except Exception as e:
|
178 |
+
raise HTTPException(
|
179 |
+
status_code=500, detail=f"Internal server error: {str(e)}"
|
180 |
+
)
|
181 |
+
|
182 |
class StopOnSequences(StoppingCriteria):
|
183 |
def __init__(self, stop_sequences, tokenizer):
|
184 |
self.stop_sequences = stop_sequences
|
185 |
self.tokenizer = tokenizer
|
186 |
self.stop_ids = [tokenizer.encode(seq, add_special_tokens=False) for seq in stop_sequences]
|
187 |
+
|
188 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
189 |
+
|
190 |
decoded_text = self.tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
191 |
+
|
192 |
for stop_sequence in self.stop_sequences:
|
193 |
if stop_sequence in decoded_text:
|
194 |
return True
|
195 |
return False
|
196 |
+
|
197 |
+
async def stream_text(model, tokenizer, input_text,
|
198 |
+
generation_config, stop_sequences,
|
199 |
+
device):
|
200 |
+
|
201 |
+
encoded_input = tokenizer(
|
202 |
+
input_text, return_tensors="pt",
|
203 |
+
truncation=True
|
204 |
+
).to(device)
|
205 |
+
|
206 |
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
|
207 |
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
208 |
+
|
|
|
|
|
|
|
209 |
output_text = ""
|
210 |
+
|
211 |
while True:
|
212 |
+
|
213 |
+
outputs = await asyncio.to_thread(model.generate,
|
214 |
+
**encoded_input,
|
215 |
+
do_sample=generation_config.do_sample,
|
216 |
+
max_new_tokens=generation_config.max_new_tokens,
|
217 |
+
temperature=generation_config.temperature,
|
218 |
+
top_p=generation_config.top_p,
|
219 |
+
top_k=generation_config.top_k,
|
220 |
+
repetition_penalty=generation_config.repetition_penalty,
|
221 |
+
num_return_sequences=generation_config.num_return_sequences,
|
222 |
+
output_scores=True,
|
223 |
+
return_dict_in_generate=True,
|
224 |
+
stopping_criteria=stopping_criteria
|
225 |
+
)
|
226 |
+
|
227 |
+
new_text = tokenizer.decode(
|
228 |
+
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
|
229 |
+
skip_special_tokens=True
|
230 |
+
)
|
231 |
+
|
232 |
+
if len(new_text) == 0:
|
233 |
+
if not stop_criteria(outputs.sequences, None):
|
234 |
+
for text in output_text.split():
|
235 |
+
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
236 |
+
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
237 |
+
break
|
238 |
+
|
239 |
+
output_text += new_text
|
240 |
+
|
241 |
+
for text in new_text.split():
|
242 |
+
yield json.dumps({"text": text, "is_end": False}) + "\n"
|
243 |
+
|
244 |
+
if stop_criteria(outputs.sequences, None):
|
245 |
+
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
246 |
+
break
|
247 |
+
|
248 |
+
encoded_input = tokenizer(
|
249 |
+
output_text, return_tensors="pt",
|
250 |
+
truncation=True
|
251 |
+
).to(device)
|
252 |
+
output_text = ""
|
253 |
+
|
254 |
+
|
255 |
+
async def generate_text(model, tokenizer, input_text,
|
256 |
+
generation_config, stop_sequences,
|
257 |
+
device):
|
258 |
+
encoded_input = tokenizer(
|
259 |
+
input_text, return_tensors="pt",
|
260 |
+
truncation=True
|
261 |
+
).to(device)
|
262 |
+
|
263 |
stop_criteria = StopOnSequences(stop_sequences, tokenizer)
|
264 |
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
265 |
+
|
266 |
+
outputs = await asyncio.to_thread(model.generate,
|
267 |
+
**encoded_input,
|
268 |
+
do_sample=generation_config.do_sample,
|
269 |
+
max_new_tokens=generation_config.max_new_tokens,
|
270 |
+
temperature=generation_config.temperature,
|
271 |
+
top_p=generation_config.top_p,
|
272 |
+
top_k=generation_config.top_k,
|
273 |
+
repetition_penalty=generation_config.repetition_penalty,
|
274 |
+
num_return_sequences=generation_config.num_return_sequences,
|
275 |
+
output_scores=True,
|
276 |
+
return_dict_in_generate=True,
|
277 |
+
stopping_criteria=stopping_criteria
|
278 |
+
)
|
279 |
+
|
280 |
+
|
281 |
+
generated_text = tokenizer.decode(
|
282 |
+
outputs.sequences[0], skip_special_tokens=True
|
283 |
+
)
|
284 |
+
|
285 |
return generated_text
|
286 |
+
|
287 |
@app.post("/generate-image")
|
288 |
async def generate_image(request: GenerateRequest):
|
289 |
try:
|
290 |
validated_body = request
|
291 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
292 |
+
|
293 |
+
if validated_body.model_name not in model_data:
|
294 |
+
config = AutoConfig.from_pretrained(
|
295 |
+
validated_body.model_name, token=HUGGINGFACE_HUB_TOKEN
|
296 |
+
)
|
297 |
+
model = pipeline(
|
298 |
+
"text-to-image", model=validated_body.model_name,
|
299 |
+
device=device, config=config
|
300 |
+
)
|
301 |
+
model_data[validated_body.model_name] = {"model":model}
|
302 |
+
else:
|
303 |
+
model = model_data[validated_body.model_name]["model"]
|
304 |
+
|
305 |
image = model(validated_body.input_text)[0]
|
306 |
+
|
307 |
image_data = list(image.getdata())
|
308 |
+
|
309 |
return json.dumps({"image_data": image_data, "is_end": True})
|
310 |
+
|
311 |
except Exception as e:
|
312 |
+
raise HTTPException(
|
313 |
+
status_code=500,
|
314 |
+
detail=f"Internal server error: {str(e)}"
|
315 |
+
)
|
316 |
+
|
317 |
+
|
318 |
@app.post("/generate-text-to-speech")
|
319 |
async def generate_text_to_speech(request: GenerateRequest):
|
320 |
try:
|
321 |
validated_body = request
|
322 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
323 |
+
|
324 |
+
if validated_body.model_name not in model_data:
|
325 |
+
config = AutoConfig.from_pretrained(
|
326 |
+
validated_body.model_name, token=HUGGINGFACE_HUB_TOKEN
|
327 |
+
)
|
328 |
+
|
329 |
+
audio_generator = pipeline(
|
330 |
+
"text-to-speech", model=validated_body.model_name,
|
331 |
+
device=device, config=config
|
332 |
+
)
|
333 |
+
model_data[validated_body.model_name] = {"model":audio_generator}
|
334 |
+
else:
|
335 |
+
audio_generator = model_data[validated_body.model_name]["model"]
|
336 |
+
|
337 |
audio = audio_generator(validated_body.input_text)
|
338 |
+
|
339 |
+
|
340 |
audio_bytes = audio["audio"]
|
341 |
+
|
342 |
audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
|
343 |
+
|
344 |
return json.dumps({"audio": audio_base64, "is_end": True})
|
345 |
+
|
346 |
except Exception as e:
|
347 |
+
raise HTTPException(
|
348 |
+
status_code=500,
|
349 |
+
detail=f"Internal server error: {str(e)}"
|
350 |
+
)
|
351 |
+
|
352 |
+
|
353 |
@app.post("/generate-video")
|
354 |
async def generate_video(request: GenerateRequest):
|
355 |
try:
|
356 |
validated_body = request
|
357 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
358 |
+
if validated_body.model_name not in model_data:
|
359 |
+
config = AutoConfig.from_pretrained(
|
360 |
+
validated_body.model_name, token=HUGGINGFACE_HUB_TOKEN
|
361 |
+
)
|
362 |
+
|
363 |
+
video_generator = pipeline(
|
364 |
+
"text-to-video", model=validated_body.model_name,
|
365 |
+
device=device, config=config
|
366 |
+
)
|
367 |
+
model_data[validated_body.model_name] = {"model":video_generator}
|
368 |
+
else:
|
369 |
+
video_generator = model_data[validated_body.model_name]["model"]
|
370 |
+
|
371 |
video = video_generator(validated_body.input_text)
|
372 |
+
|
373 |
+
|
374 |
video_base64 = base64.b64encode(video).decode('utf-8')
|
375 |
+
|
376 |
return json.dumps({"video": video_base64, "is_end": True})
|
377 |
+
|
378 |
except Exception as e:
|
379 |
+
raise HTTPException(
|
380 |
+
status_code=500,
|
381 |
+
detail=f"Internal server error: {str(e)}"
|
382 |
+
)
|
383 |
+
|
384 |
if __name__ == "__main__":
|
|
|
|
|
385 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|