Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,18 +1,11 @@
|
|
1 |
import os
|
2 |
import torch
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
-
from fastapi.responses import
|
5 |
from pydantic import BaseModel, field_validator
|
6 |
-
from transformers import
|
7 |
-
AutoConfig,
|
8 |
-
AutoModelForCausalLM,
|
9 |
-
AutoTokenizer,
|
10 |
-
GenerationConfig,
|
11 |
-
StoppingCriteriaList
|
12 |
-
)
|
13 |
import boto3
|
14 |
import uvicorn
|
15 |
-
import asyncio
|
16 |
from io import BytesIO
|
17 |
from transformers import pipeline
|
18 |
|
@@ -26,21 +19,26 @@ s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_a
|
|
26 |
|
27 |
app = FastAPI()
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
class GenerateRequest(BaseModel):
|
30 |
model_name: str
|
31 |
input_text: str = ""
|
32 |
task_type: str
|
33 |
temperature: float = 1.0
|
34 |
max_new_tokens: int = 10
|
35 |
-
stream: bool = True
|
36 |
top_p: float = 1.0
|
37 |
top_k: int = 50
|
38 |
-
repetition_penalty: float = 1.1
|
39 |
num_return_sequences: int = 1
|
40 |
do_sample: bool = True
|
41 |
-
chunk_delay: float = 0.0
|
42 |
stop_sequences: list[str] = []
|
43 |
-
no_repeat_ngram_size: int = 2
|
44 |
|
45 |
@field_validator("model_name")
|
46 |
def model_name_cannot_be_empty(cls, v):
|
@@ -62,11 +60,11 @@ class GenerateRequest(BaseModel):
|
|
62 |
return v
|
63 |
|
64 |
class S3ModelLoader:
|
65 |
-
def
|
66 |
self.bucket_name = bucket_name
|
67 |
self.s3_client = s3_client
|
68 |
|
69 |
-
def
|
70 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
71 |
|
72 |
async def load_model_and_tokenizer(self, model_name):
|
@@ -75,20 +73,20 @@ class S3ModelLoader:
|
|
75 |
config = AutoConfig.from_pretrained(s3_uri, local_files_only=True)
|
76 |
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=True)
|
77 |
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True)
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
return model, tokenizer
|
83 |
except EnvironmentError:
|
84 |
try:
|
85 |
config = AutoConfig.from_pretrained(model_name)
|
86 |
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
|
|
|
87 |
model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
88 |
-
|
89 |
-
if tokenizer.
|
90 |
-
tokenizer.pad_token_id =
|
91 |
-
|
92 |
model.save_pretrained(s3_uri)
|
93 |
tokenizer.save_pretrained(s3_uri)
|
94 |
return model, tokenizer
|
@@ -105,13 +103,11 @@ async def generate(request: GenerateRequest):
|
|
105 |
task_type = request.task_type
|
106 |
temperature = request.temperature
|
107 |
max_new_tokens = request.max_new_tokens
|
108 |
-
stream = request.stream
|
109 |
top_p = request.top_p
|
110 |
top_k = request.top_k
|
111 |
repetition_penalty = request.repetition_penalty
|
112 |
num_return_sequences = request.num_return_sequences
|
113 |
do_sample = request.do_sample
|
114 |
-
chunk_delay = request.chunk_delay
|
115 |
stop_sequences = request.stop_sequences
|
116 |
no_repeat_ngram_size = request.no_repeat_ngram_size
|
117 |
|
@@ -127,74 +123,41 @@ async def generate(request: GenerateRequest):
|
|
127 |
repetition_penalty=repetition_penalty,
|
128 |
do_sample=do_sample,
|
129 |
num_return_sequences=num_return_sequences,
|
130 |
-
no_repeat_ngram_size=no_repeat_ngram_size,
|
|
|
131 |
)
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
media_type="text/plain"
|
136 |
-
)
|
137 |
|
138 |
except Exception as e:
|
139 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
140 |
|
141 |
-
|
142 |
max_model_length = model.config.max_position_embeddings
|
143 |
encoded_input = tokenizer(input_text, return_tensors="pt", max_length=max_model_length, truncation=True).to(device)
|
144 |
|
145 |
-
|
146 |
-
decoded_output = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
147 |
-
for stop in stop_sequences:
|
148 |
-
if decoded_output.endswith(stop):
|
149 |
-
return True
|
150 |
-
return False
|
151 |
|
152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
repetition_penalty=generation_config.repetition_penalty,
|
166 |
-
num_return_sequences=generation_config.num_return_sequences,
|
167 |
-
stopping_criteria=stopping_criteria,
|
168 |
-
output_scores=True,
|
169 |
-
return_dict_in_generate=True,
|
170 |
-
pad_token_id=tokenizer.pad_token_id,
|
171 |
-
no_repeat_ngram_size=generation_config.no_repeat_ngram_size, # Passed to model.generate
|
172 |
-
)
|
173 |
-
except IndexError as e:
|
174 |
-
print(f"IndexError during generation: {e}")
|
175 |
-
break
|
176 |
-
|
177 |
-
new_token_ids = outputs.sequences[0][encoded_input.input_ids.shape[-1]:]
|
178 |
-
|
179 |
-
for token_id in new_token_ids:
|
180 |
-
token = tokenizer.decode(token_id, skip_special_tokens=True)
|
181 |
-
token_buffer.append(token)
|
182 |
-
if len(token_buffer) >= 10:
|
183 |
-
yield "".join(token_buffer)
|
184 |
-
token_buffer = []
|
185 |
-
await asyncio.sleep(chunk_delay)
|
186 |
-
|
187 |
-
if token_buffer:
|
188 |
-
yield "".join(token_buffer)
|
189 |
-
token_buffer = []
|
190 |
-
|
191 |
-
if stop_criteria(outputs.sequences, None):
|
192 |
-
break
|
193 |
-
|
194 |
-
if len(new_token_ids) < generation_config.max_new_tokens:
|
195 |
-
break
|
196 |
-
|
197 |
-
output_ids = outputs.sequences
|
198 |
|
199 |
@app.post("/generate-image")
|
200 |
async def generate_image(request: GenerateRequest):
|
|
|
1 |
import os
|
2 |
import torch
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
+
from fastapi.responses import JSONResponse
|
5 |
from pydantic import BaseModel, field_validator
|
6 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, GenerationConfig, StoppingCriteriaList
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
import boto3
|
8 |
import uvicorn
|
|
|
9 |
from io import BytesIO
|
10 |
from transformers import pipeline
|
11 |
|
|
|
19 |
|
20 |
app = FastAPI()
|
21 |
|
22 |
+
SPECIAL_TOKENS = {
|
23 |
+
"bos_token": "<|startoftext|>",
|
24 |
+
"eos_token": "<|endoftext|>",
|
25 |
+
"pad_token": "[PAD]",
|
26 |
+
"unk_token": "[UNK]",
|
27 |
+
}
|
28 |
+
|
29 |
class GenerateRequest(BaseModel):
|
30 |
model_name: str
|
31 |
input_text: str = ""
|
32 |
task_type: str
|
33 |
temperature: float = 1.0
|
34 |
max_new_tokens: int = 10
|
|
|
35 |
top_p: float = 1.0
|
36 |
top_k: int = 50
|
37 |
+
repetition_penalty: float = 1.1
|
38 |
num_return_sequences: int = 1
|
39 |
do_sample: bool = True
|
|
|
40 |
stop_sequences: list[str] = []
|
41 |
+
no_repeat_ngram_size: int = 2
|
42 |
|
43 |
@field_validator("model_name")
|
44 |
def model_name_cannot_be_empty(cls, v):
|
|
|
60 |
return v
|
61 |
|
62 |
class S3ModelLoader:
|
63 |
+
def.__init__(self, bucket_name, s3_client):
|
64 |
self.bucket_name = bucket_name
|
65 |
self.s3_client = s3_client
|
66 |
|
67 |
+
def._get_s3_uri(self, model_name):
|
68 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
69 |
|
70 |
async def load_model_and_tokenizer(self, model_name):
|
|
|
73 |
config = AutoConfig.from_pretrained(s3_uri, local_files_only=True)
|
74 |
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=True)
|
75 |
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True)
|
76 |
+
tokenizer.add_special_tokens(SPECIAL_TOKENS)
|
77 |
+
model.resize_token_embeddings(len(tokenizer))
|
78 |
+
if tokenizer.pad_token_id is None:
|
79 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
80 |
return model, tokenizer
|
81 |
except EnvironmentError:
|
82 |
try:
|
83 |
config = AutoConfig.from_pretrained(model_name)
|
84 |
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
|
85 |
+
tokenizer.add_special_tokens(SPECIAL_TOKENS)
|
86 |
model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
87 |
+
model.resize_token_embeddings(len(tokenizer))
|
88 |
+
if tokenizer.pad_token_id is None:
|
89 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
90 |
model.save_pretrained(s3_uri)
|
91 |
tokenizer.save_pretrained(s3_uri)
|
92 |
return model, tokenizer
|
|
|
103 |
task_type = request.task_type
|
104 |
temperature = request.temperature
|
105 |
max_new_tokens = request.max_new_tokens
|
|
|
106 |
top_p = request.top_p
|
107 |
top_k = request.top_k
|
108 |
repetition_penalty = request.repetition_penalty
|
109 |
num_return_sequences = request.num_return_sequences
|
110 |
do_sample = request.do_sample
|
|
|
111 |
stop_sequences = request.stop_sequences
|
112 |
no_repeat_ngram_size = request.no_repeat_ngram_size
|
113 |
|
|
|
123 |
repetition_penalty=repetition_penalty,
|
124 |
do_sample=do_sample,
|
125 |
num_return_sequences=num_return_sequences,
|
126 |
+
no_repeat_ngram_size=no_repeat_ngram_size,
|
127 |
+
pad_token_id=tokenizer.pad_token_id
|
128 |
)
|
129 |
|
130 |
+
generated_text = generate_text(model, tokenizer, input_text, generation_config, stop_sequences, device)
|
131 |
+
return JSONResponse({"text": generated_text})
|
|
|
|
|
132 |
|
133 |
except Exception as e:
|
134 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
135 |
|
136 |
+
def generate_text(model, tokenizer, input_text, generation_config, stop_sequences, device):
|
137 |
max_model_length = model.config.max_position_embeddings
|
138 |
encoded_input = tokenizer(input_text, return_tensors="pt", max_length=max_model_length, truncation=True).to(device)
|
139 |
|
140 |
+
stopping_criteria = StoppingCriteriaList()
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
+
class CustomStoppingCriteria(StoppingCriteriaList):
|
143 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
144 |
+
decoded_output = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
145 |
+
for stop in stop_sequences:
|
146 |
+
if decoded_output.endswith(stop):
|
147 |
+
return True
|
148 |
+
return False
|
149 |
|
150 |
+
stopping_criteria.append(CustomStoppingCriteria())
|
151 |
+
|
152 |
+
outputs = model.generate(
|
153 |
+
encoded_input.input_ids,
|
154 |
+
generation_config=generation_config,
|
155 |
+
stopping_criteria=stopping_criteria,
|
156 |
+
pad_token_id=generation_config.pad_token_id
|
157 |
+
)
|
158 |
+
|
159 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
160 |
+
return generated_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
@app.post("/generate-image")
|
163 |
async def generate_image(request: GenerateRequest):
|