Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -17,6 +17,7 @@ import asyncio
|
|
17 |
from io import BytesIO
|
18 |
from transformers import pipeline
|
19 |
import json
|
|
|
20 |
|
21 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
22 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
@@ -24,6 +25,11 @@ AWS_REGION = os.getenv("AWS_REGION")
|
|
24 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
25 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
26 |
|
|
|
|
|
|
|
|
|
|
|
27 |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,
|
28 |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
29 |
region_name=AWS_REGION)
|
@@ -53,7 +59,8 @@ class GenerateRequest(BaseModel):
|
|
53 |
|
54 |
@field_validator("task_type")
|
55 |
def task_type_must_be_valid(cls, v):
|
56 |
-
valid_types = ["text-to-text", "text-to-image",
|
|
|
57 |
if v not in valid_types:
|
58 |
raise ValueError(f"task_type must be one of: {valid_types}")
|
59 |
return v
|
@@ -64,34 +71,51 @@ class S3ModelLoader:
|
|
64 |
self.s3_client = s3_client
|
65 |
|
66 |
def _get_s3_uri(self, model_name):
|
67 |
-
return f"s3://{self.bucket_name}/
|
|
|
68 |
|
69 |
async def load_model_and_tokenizer(self, model_name):
|
70 |
s3_uri = self._get_s3_uri(model_name)
|
71 |
try:
|
72 |
-
config = AutoConfig.from_pretrained(
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
return model, tokenizer
|
80 |
except EnvironmentError:
|
81 |
try:
|
82 |
config = AutoConfig.from_pretrained(model_name)
|
83 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
model.save_pretrained(s3_uri)
|
90 |
tokenizer.save_pretrained(s3_uri)
|
91 |
return model, tokenizer
|
92 |
except Exception as e:
|
93 |
-
raise HTTPException(
|
94 |
-
|
|
|
|
|
95 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
96 |
|
97 |
@app.post("/generate")
|
@@ -111,7 +135,8 @@ async def generate(request: GenerateRequest):
|
|
111 |
chunk_delay = request.chunk_delay
|
112 |
stop_sequences = request.stop_sequences
|
113 |
|
114 |
-
model, tokenizer = await model_loader
|
|
|
115 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
116 |
model.to(device)
|
117 |
|
@@ -131,19 +156,20 @@ async def generate(request: GenerateRequest):
|
|
131 |
device, chunk_delay),
|
132 |
media_type="text/plain"
|
133 |
)
|
134 |
-
|
135 |
except Exception as e:
|
136 |
-
raise HTTPException(
|
137 |
-
|
|
|
138 |
|
139 |
|
140 |
async def stream_text(model, tokenizer, input_text,
|
141 |
generation_config, stop_sequences,
|
142 |
device, chunk_delay, max_length=2048):
|
143 |
-
encoded_input = tokenizer(
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
input_length = encoded_input["input_ids"].shape[1]
|
148 |
remaining_tokens = max_length - input_length
|
149 |
|
@@ -153,7 +179,7 @@ async def stream_text(model, tokenizer, input_text,
|
|
153 |
generation_config.max_new_tokens = min(
|
154 |
remaining_tokens, generation_config.max_new_tokens
|
155 |
)
|
156 |
-
|
157 |
def find_stop(output_text, stop_sequences):
|
158 |
for seq in stop_sequences:
|
159 |
if seq in output_text:
|
@@ -161,9 +187,9 @@ async def stream_text(model, tokenizer, input_text,
|
|
161 |
return last_index + len(seq)
|
162 |
|
163 |
return -1
|
164 |
-
|
165 |
output_text = ""
|
166 |
-
|
167 |
while True:
|
168 |
outputs = model.generate(
|
169 |
**encoded_input,
|
@@ -177,51 +203,50 @@ async def stream_text(model, tokenizer, input_text,
|
|
177 |
output_scores=True,
|
178 |
return_dict_in_generate=True,
|
179 |
)
|
180 |
-
|
181 |
-
new_text = tokenizer.decode(
|
182 |
-
|
|
|
|
|
|
|
183 |
output_text += new_text
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
stop_index = find_stop(output_text, stop_sequences)
|
188 |
-
|
189 |
if stop_index != -1:
|
190 |
final_output = output_text[:stop_index]
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
for chunk in chunked_output:
|
197 |
-
|
198 |
yield json.dumps({"text": chunk, "is_end": False}) + "\n"
|
199 |
await asyncio.sleep(chunk_delay)
|
200 |
-
|
201 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
202 |
break
|
203 |
-
|
204 |
else:
|
205 |
-
chunked_output = [new_text[i:i+10]
|
|
|
206 |
for chunk in chunked_output:
|
207 |
yield json.dumps({"text": chunk, "is_end": False}) + "\n"
|
208 |
await asyncio.sleep(chunk_delay)
|
209 |
-
|
210 |
-
|
211 |
if len(output_text) >= generation_config.max_new_tokens:
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
for chunk in chunked_output:
|
216 |
yield json.dumps({"text": chunk, "is_end": False}) + "\n"
|
217 |
await asyncio.sleep(chunk_delay)
|
218 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
219 |
break
|
220 |
|
221 |
-
encoded_input = tokenizer(
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
|
226 |
@app.post("/generate-image")
|
227 |
async def generate_image(request: GenerateRequest):
|
@@ -229,62 +254,78 @@ async def generate_image(request: GenerateRequest):
|
|
229 |
validated_body = request
|
230 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
231 |
|
232 |
-
image_generator = pipeline(
|
233 |
-
|
234 |
-
|
|
|
235 |
image = image_generator(validated_body.input_text)[0]
|
236 |
|
237 |
img_byte_arr = BytesIO()
|
238 |
image.save(img_byte_arr, format="PNG")
|
239 |
img_byte_arr.seek(0)
|
240 |
|
241 |
-
return StreamingResponse(
|
242 |
-
|
|
|
|
|
243 |
except Exception as e:
|
244 |
-
raise HTTPException(
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
247 |
@app.post("/generate-text-to-speech")
|
248 |
async def generate_text_to_speech(request: GenerateRequest):
|
249 |
try:
|
250 |
validated_body = request
|
251 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
252 |
-
|
253 |
-
audio_generator = pipeline(
|
254 |
-
|
255 |
-
|
|
|
256 |
audio = audio_generator(validated_body.input_text)[0]
|
257 |
|
258 |
audio_byte_arr = BytesIO()
|
259 |
audio.save(audio_byte_arr)
|
260 |
audio_byte_arr.seek(0)
|
261 |
|
262 |
-
return StreamingResponse(
|
|
|
|
|
263 |
|
264 |
except Exception as e:
|
265 |
-
|
266 |
-
|
|
|
|
|
|
|
267 |
|
268 |
@app.post("/generate-video")
|
269 |
async def generate_video(request: GenerateRequest):
|
270 |
try:
|
271 |
validated_body = request
|
272 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
273 |
-
video_generator = pipeline(
|
274 |
-
|
275 |
-
|
|
|
276 |
video = video_generator(validated_body.input_text)[0]
|
277 |
|
278 |
video_byte_arr = BytesIO()
|
279 |
video.save(video_byte_arr)
|
280 |
video_byte_arr.seek(0)
|
281 |
|
282 |
-
return StreamingResponse(
|
283 |
-
|
284 |
-
|
|
|
285 |
except Exception as e:
|
286 |
-
|
287 |
-
|
|
|
|
|
288 |
|
289 |
if __name__ == "__main__":
|
290 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
17 |
from io import BytesIO
|
18 |
from transformers import pipeline
|
19 |
import json
|
20 |
+
from huggingface_hub import login
|
21 |
|
22 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
23 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
|
25 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
26 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
27 |
|
28 |
+
|
29 |
+
if HUGGINGFACE_HUB_TOKEN:
|
30 |
+
login(token=HUGGINGFACE_HUB_TOKEN,
|
31 |
+
add_to_git_credential=False)
|
32 |
+
|
33 |
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID,
|
34 |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
35 |
region_name=AWS_REGION)
|
|
|
59 |
|
60 |
@field_validator("task_type")
|
61 |
def task_type_must_be_valid(cls, v):
|
62 |
+
valid_types = ["text-to-text", "text-to-image",
|
63 |
+
"text-to-speech", "text-to-video"]
|
64 |
if v not in valid_types:
|
65 |
raise ValueError(f"task_type must be one of: {valid_types}")
|
66 |
return v
|
|
|
71 |
self.s3_client = s3_client
|
72 |
|
73 |
def _get_s3_uri(self, model_name):
|
74 |
+
return f"s3://{self.bucket_name}/" \
|
75 |
+
f"{model_name.replace('/', '-')}"
|
76 |
|
77 |
async def load_model_and_tokenizer(self, model_name):
|
78 |
s3_uri = self._get_s3_uri(model_name)
|
79 |
try:
|
80 |
+
config = AutoConfig.from_pretrained(
|
81 |
+
s3_uri, local_files_only=True
|
82 |
+
)
|
83 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
84 |
+
s3_uri, config=config, local_files_only=True
|
85 |
+
)
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
87 |
+
s3_uri, config=config, local_files_only=True
|
88 |
+
)
|
89 |
+
|
90 |
+
if tokenizer.eos_token_id is not None and \
|
91 |
+
tokenizer.pad_token_id is None:
|
92 |
+
tokenizer.pad_token_id = config.pad_token_id \
|
93 |
+
or tokenizer.eos_token_id
|
94 |
|
95 |
return model, tokenizer
|
96 |
except EnvironmentError:
|
97 |
try:
|
98 |
config = AutoConfig.from_pretrained(model_name)
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
100 |
+
model_name, config=config
|
101 |
+
)
|
102 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(
|
103 |
+
model_name, config=config
|
104 |
+
)
|
105 |
+
|
106 |
+
if tokenizer.eos_token_id is not None and \
|
107 |
+
tokenizer.pad_token_id is None:
|
108 |
+
tokenizer.pad_token_id = config.pad_token_id \
|
109 |
+
or tokenizer.eos_token_id
|
110 |
|
111 |
model.save_pretrained(s3_uri)
|
112 |
tokenizer.save_pretrained(s3_uri)
|
113 |
return model, tokenizer
|
114 |
except Exception as e:
|
115 |
+
raise HTTPException(
|
116 |
+
status_code=500, detail=f"Error loading model: {e}"
|
117 |
+
)
|
118 |
+
|
119 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
120 |
|
121 |
@app.post("/generate")
|
|
|
135 |
chunk_delay = request.chunk_delay
|
136 |
stop_sequences = request.stop_sequences
|
137 |
|
138 |
+
model, tokenizer = await model_loader.\
|
139 |
+
load_model_and_tokenizer(model_name)
|
140 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
141 |
model.to(device)
|
142 |
|
|
|
156 |
device, chunk_delay),
|
157 |
media_type="text/plain"
|
158 |
)
|
159 |
+
|
160 |
except Exception as e:
|
161 |
+
raise HTTPException(
|
162 |
+
status_code=500, detail=f"Internal server error: {str(e)}"
|
163 |
+
)
|
164 |
|
165 |
|
166 |
async def stream_text(model, tokenizer, input_text,
|
167 |
generation_config, stop_sequences,
|
168 |
device, chunk_delay, max_length=2048):
|
169 |
+
encoded_input = tokenizer(
|
170 |
+
input_text, return_tensors="pt",
|
171 |
+
truncation=True, max_length=max_length
|
172 |
+
).to(device)
|
173 |
input_length = encoded_input["input_ids"].shape[1]
|
174 |
remaining_tokens = max_length - input_length
|
175 |
|
|
|
179 |
generation_config.max_new_tokens = min(
|
180 |
remaining_tokens, generation_config.max_new_tokens
|
181 |
)
|
182 |
+
|
183 |
def find_stop(output_text, stop_sequences):
|
184 |
for seq in stop_sequences:
|
185 |
if seq in output_text:
|
|
|
187 |
return last_index + len(seq)
|
188 |
|
189 |
return -1
|
190 |
+
|
191 |
output_text = ""
|
192 |
+
|
193 |
while True:
|
194 |
outputs = model.generate(
|
195 |
**encoded_input,
|
|
|
203 |
output_scores=True,
|
204 |
return_dict_in_generate=True,
|
205 |
)
|
206 |
+
|
207 |
+
new_text = tokenizer.decode(
|
208 |
+
outputs.sequences[0][len(encoded_input["input_ids"][0]):],
|
209 |
+
skip_special_tokens=True
|
210 |
+
)
|
211 |
+
|
212 |
output_text += new_text
|
213 |
+
|
|
|
|
|
214 |
stop_index = find_stop(output_text, stop_sequences)
|
215 |
+
|
216 |
if stop_index != -1:
|
217 |
final_output = output_text[:stop_index]
|
218 |
+
|
219 |
+
chunked_output = [final_output[i:i+10]
|
220 |
+
for i in range(0, len(final_output), 10)]
|
221 |
+
|
|
|
222 |
for chunk in chunked_output:
|
|
|
223 |
yield json.dumps({"text": chunk, "is_end": False}) + "\n"
|
224 |
await asyncio.sleep(chunk_delay)
|
225 |
+
|
226 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
227 |
break
|
228 |
+
|
229 |
else:
|
230 |
+
chunked_output = [new_text[i:i+10]
|
231 |
+
for i in range(0, len(new_text), 10)]
|
232 |
for chunk in chunked_output:
|
233 |
yield json.dumps({"text": chunk, "is_end": False}) + "\n"
|
234 |
await asyncio.sleep(chunk_delay)
|
235 |
+
|
|
|
236 |
if len(output_text) >= generation_config.max_new_tokens:
|
237 |
+
chunked_output = [output_text[i:i+10]
|
238 |
+
for i in range(0, len(output_text), 10)]
|
239 |
+
|
240 |
for chunk in chunked_output:
|
241 |
yield json.dumps({"text": chunk, "is_end": False}) + "\n"
|
242 |
await asyncio.sleep(chunk_delay)
|
243 |
yield json.dumps({"text": "", "is_end": True}) + "\n"
|
244 |
break
|
245 |
|
246 |
+
encoded_input = tokenizer(
|
247 |
+
output_text, return_tensors="pt",
|
248 |
+
truncation=True, max_length=max_length
|
249 |
+
).to(device)
|
250 |
|
251 |
@app.post("/generate-image")
|
252 |
async def generate_image(request: GenerateRequest):
|
|
|
254 |
validated_body = request
|
255 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
256 |
|
257 |
+
image_generator = pipeline(
|
258 |
+
"text-to-image", model=validated_body.model_name,
|
259 |
+
device=device
|
260 |
+
)
|
261 |
image = image_generator(validated_body.input_text)[0]
|
262 |
|
263 |
img_byte_arr = BytesIO()
|
264 |
image.save(img_byte_arr, format="PNG")
|
265 |
img_byte_arr.seek(0)
|
266 |
|
267 |
+
return StreamingResponse(
|
268 |
+
img_byte_arr, media_type="image/png"
|
269 |
+
)
|
270 |
+
|
271 |
except Exception as e:
|
272 |
+
raise HTTPException(
|
273 |
+
status_code=500,
|
274 |
+
detail=f"Internal server error: {str(e)}"
|
275 |
+
)
|
276 |
+
|
277 |
+
|
278 |
@app.post("/generate-text-to-speech")
|
279 |
async def generate_text_to_speech(request: GenerateRequest):
|
280 |
try:
|
281 |
validated_body = request
|
282 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
283 |
+
|
284 |
+
audio_generator = pipeline(
|
285 |
+
"text-to-speech", model=validated_body.model_name,
|
286 |
+
device=device
|
287 |
+
)
|
288 |
audio = audio_generator(validated_body.input_text)[0]
|
289 |
|
290 |
audio_byte_arr = BytesIO()
|
291 |
audio.save(audio_byte_arr)
|
292 |
audio_byte_arr.seek(0)
|
293 |
|
294 |
+
return StreamingResponse(
|
295 |
+
audio_byte_arr, media_type="audio/wav"
|
296 |
+
)
|
297 |
|
298 |
except Exception as e:
|
299 |
+
raise HTTPException(
|
300 |
+
status_code=500,
|
301 |
+
detail=f"Internal server error: {str(e)}"
|
302 |
+
)
|
303 |
+
|
304 |
|
305 |
@app.post("/generate-video")
|
306 |
async def generate_video(request: GenerateRequest):
|
307 |
try:
|
308 |
validated_body = request
|
309 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
310 |
+
video_generator = pipeline(
|
311 |
+
"text-to-video", model=validated_body.model_name,
|
312 |
+
device=device
|
313 |
+
)
|
314 |
video = video_generator(validated_body.input_text)[0]
|
315 |
|
316 |
video_byte_arr = BytesIO()
|
317 |
video.save(video_byte_arr)
|
318 |
video_byte_arr.seek(0)
|
319 |
|
320 |
+
return StreamingResponse(
|
321 |
+
video_byte_arr, media_type="video/mp4"
|
322 |
+
)
|
323 |
+
|
324 |
except Exception as e:
|
325 |
+
raise HTTPException(
|
326 |
+
status_code=500,
|
327 |
+
detail=f"Internal server error: {str(e)}"
|
328 |
+
)
|
329 |
|
330 |
if __name__ == "__main__":
|
331 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|