Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,19 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
-
import
|
4 |
-
from io import BytesIO
|
5 |
-
from typing import Union
|
6 |
-
|
7 |
-
from fastapi import FastAPI, HTTPException, Response, Request, UploadFile, File
|
8 |
from fastapi.responses import StreamingResponse
|
9 |
-
from pydantic import BaseModel,
|
10 |
from transformers import (
|
11 |
-
AutoConfig,
|
12 |
AutoModelForCausalLM,
|
13 |
AutoTokenizer,
|
14 |
-
pipeline,
|
15 |
GenerationConfig,
|
16 |
StoppingCriteriaList
|
17 |
)
|
18 |
import boto3
|
19 |
-
from huggingface_hub import hf_hub_download, HfApi
|
20 |
-
import soundfile as sf
|
21 |
-
import numpy as np
|
22 |
-
import torch
|
23 |
import uvicorn
|
24 |
-
import
|
25 |
-
|
26 |
-
|
27 |
|
28 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
29 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
@@ -31,13 +21,17 @@ AWS_REGION = os.getenv("AWS_REGION")
|
|
31 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
32 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
33 |
|
|
|
|
|
|
|
|
|
34 |
class GenerateRequest(BaseModel):
|
35 |
model_name: str
|
36 |
input_text: str = ""
|
37 |
task_type: str
|
38 |
temperature: float = 1.0
|
39 |
max_new_tokens: int = 200
|
40 |
-
stream: bool =
|
41 |
top_p: float = 1.0
|
42 |
top_k: int = 50
|
43 |
repetition_penalty: float = 1.0
|
@@ -46,8 +40,6 @@ class GenerateRequest(BaseModel):
|
|
46 |
chunk_delay: float = 0.0
|
47 |
stop_sequences: list[str] = []
|
48 |
|
49 |
-
model_config = {"protected_namespaces": ()}
|
50 |
-
|
51 |
@field_validator("model_name")
|
52 |
def model_name_cannot_be_empty(cls, v):
|
53 |
if not v:
|
@@ -65,7 +57,6 @@ class S3ModelLoader:
|
|
65 |
def __init__(self, bucket_name, s3_client):
|
66 |
self.bucket_name = bucket_name
|
67 |
self.s3_client = s3_client
|
68 |
-
self.api = HfApi()
|
69 |
|
70 |
def _get_s3_uri(self, model_name):
|
71 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
@@ -73,7 +64,6 @@ class S3ModelLoader:
|
|
73 |
async def load_model_and_tokenizer(self, model_name):
|
74 |
s3_uri = self._get_s3_uri(model_name)
|
75 |
try:
|
76 |
-
logging.info(f"Trying to load {model_name} from S3...")
|
77 |
config = AutoConfig.from_pretrained(s3_uri, local_files_only=True)
|
78 |
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=True)
|
79 |
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True)
|
@@ -81,130 +71,170 @@ class S3ModelLoader:
|
|
81 |
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
|
82 |
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
|
83 |
|
84 |
-
logging.info(f"Loaded {model_name} from S3 successfully.")
|
85 |
return model, tokenizer
|
86 |
except EnvironmentError:
|
87 |
-
logging.info(f"Model {model_name} not found in S3. Downloading...")
|
88 |
try:
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
temp_dir = "temp_model"
|
93 |
-
os.makedirs(temp_dir, exist_ok=True)
|
94 |
-
|
95 |
-
for file_name in files_to_download:
|
96 |
-
hf_hub_download(repo_id=model_name, filename=file_name, local_dir=temp_dir, token=HUGGINGFACE_HUB_TOKEN)
|
97 |
-
|
98 |
-
config = AutoConfig.from_pretrained(temp_dir)
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained(temp_dir, config=config)
|
100 |
-
model = AutoModelForCausalLM.from_pretrained(temp_dir, config=config)
|
101 |
|
102 |
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
|
103 |
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
|
104 |
|
105 |
-
logging.info(f"Downloaded {model_name} successfully.")
|
106 |
-
logging.info(f"Saving {model_name} to S3...")
|
107 |
model.save_pretrained(s3_uri)
|
108 |
tokenizer.save_pretrained(s3_uri)
|
109 |
-
logging.info(f"Saved {model_name} to S3 successfully.")
|
110 |
-
|
111 |
-
shutil.rmtree(temp_dir)
|
112 |
-
|
113 |
return model, tokenizer
|
114 |
except Exception as e:
|
115 |
-
logging.exception(f"Error downloading/uploading model: {e}")
|
116 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
117 |
|
118 |
-
app = FastAPI()
|
119 |
-
|
120 |
-
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
|
121 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
122 |
|
123 |
@app.post("/generate")
|
124 |
-
async def generate(request:
|
125 |
try:
|
126 |
-
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
129 |
model.to(device)
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
max_length = model.config.max_position_embeddings
|
146 |
-
|
147 |
-
while True:
|
148 |
-
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
|
149 |
-
input_length = encoded_input["input_ids"].shape[1]
|
150 |
-
remaining_tokens = max_length - input_length
|
151 |
-
|
152 |
-
if remaining_tokens <= 0:
|
153 |
-
break
|
154 |
-
|
155 |
-
generation_config.max_new_tokens = min(remaining_tokens, validated_body.max_new_tokens)
|
156 |
-
stopping_criteria = StoppingCriteriaList(
|
157 |
-
[lambda _, outputs: tokenizer.decode(outputs[0][-1], skip_special_tokens=True) in validated_body.stop_sequences] if validated_body.stop_sequences else []
|
158 |
-
)
|
159 |
-
|
160 |
-
output = model.generate(**encoded_input, generation_config=generation_config, stopping_criteria=stopping_criteria)
|
161 |
-
chunk = tokenizer.decode(output[0], skip_special_tokens=True)
|
162 |
-
generated_text += chunk
|
163 |
-
yield chunk
|
164 |
-
time.sleep(validated_body.chunk_delay)
|
165 |
-
input_text = generated_text
|
166 |
-
|
167 |
-
if validated_body.stream:
|
168 |
-
return StreamingResponse(stream_text(), media_type="text/plain")
|
169 |
-
else:
|
170 |
-
generated_text = ""
|
171 |
-
async for chunk in stream_text():
|
172 |
-
generated_text += chunk
|
173 |
-
return {"result": generated_text}
|
174 |
-
|
175 |
-
elif validated_body.task_type == "text-to-image":
|
176 |
-
generator = pipeline("text-to-image", model=model, tokenizer=tokenizer, device=device)
|
177 |
-
image = generator(validated_body.input_text)[0]
|
178 |
-
image_bytes = image.tobytes()
|
179 |
-
return Response(content=image_bytes, media_type="image/png")
|
180 |
-
|
181 |
-
elif validated_body.task_type == "text-to-speech":
|
182 |
-
generator = pipeline("text-to-speech", model=model, tokenizer=tokenizer, device=device)
|
183 |
-
audio = generator(validated_body.input_text)
|
184 |
-
audio_bytesio = BytesIO()
|
185 |
-
sf.write(audio_bytesio, audio["sampling_rate"], np.int16(audio["audio"]))
|
186 |
-
audio_bytes = audio_bytesio.getvalue()
|
187 |
-
return Response(content=audio_bytes, media_type="audio/wav")
|
188 |
-
|
189 |
-
elif validated_body.task_type == "text-to-video":
|
190 |
-
try:
|
191 |
-
generator = pipeline("text-to-video", model=model, tokenizer=tokenizer, device=device)
|
192 |
-
video = generator(validated_body.input_text)
|
193 |
-
return Response(content=video, media_type="video/mp4")
|
194 |
-
except Exception as e:
|
195 |
-
raise HTTPException(status_code=500, detail=f"Error in text-to-video generation: {e}")
|
196 |
|
197 |
-
|
198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
|
200 |
-
except HTTPException as e:
|
201 |
-
raise e
|
202 |
-
except ValidationError as e:
|
203 |
-
raise HTTPException(status_code=422, detail=e.errors())
|
204 |
except Exception as e:
|
205 |
-
|
206 |
-
raise HTTPException(status_code=500, detail="An unexpected error occurred.")
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
1 |
import os
|
2 |
+
import torch
|
3 |
+
from fastapi import FastAPI, HTTPException
|
|
|
|
|
|
|
|
|
4 |
from fastapi.responses import StreamingResponse
|
5 |
+
from pydantic import BaseModel, field_validator
|
6 |
from transformers import (
|
|
|
7 |
AutoModelForCausalLM,
|
8 |
AutoTokenizer,
|
|
|
9 |
GenerationConfig,
|
10 |
StoppingCriteriaList
|
11 |
)
|
12 |
import boto3
|
|
|
|
|
|
|
|
|
13 |
import uvicorn
|
14 |
+
import asyncio
|
15 |
+
from io import BytesIO
|
16 |
+
from transformers import pipeline
|
17 |
|
18 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
19 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
|
|
21 |
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
22 |
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
|
23 |
|
24 |
+
s3_client = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY, region_name=AWS_REGION)
|
25 |
+
|
26 |
+
app = FastAPI()
|
27 |
+
|
28 |
class GenerateRequest(BaseModel):
|
29 |
model_name: str
|
30 |
input_text: str = ""
|
31 |
task_type: str
|
32 |
temperature: float = 1.0
|
33 |
max_new_tokens: int = 200
|
34 |
+
stream: bool = True
|
35 |
top_p: float = 1.0
|
36 |
top_k: int = 50
|
37 |
repetition_penalty: float = 1.0
|
|
|
40 |
chunk_delay: float = 0.0
|
41 |
stop_sequences: list[str] = []
|
42 |
|
|
|
|
|
43 |
@field_validator("model_name")
|
44 |
def model_name_cannot_be_empty(cls, v):
|
45 |
if not v:
|
|
|
57 |
def __init__(self, bucket_name, s3_client):
|
58 |
self.bucket_name = bucket_name
|
59 |
self.s3_client = s3_client
|
|
|
60 |
|
61 |
def _get_s3_uri(self, model_name):
|
62 |
return f"s3://{self.bucket_name}/{model_name.replace('/', '-')}"
|
|
|
64 |
async def load_model_and_tokenizer(self, model_name):
|
65 |
s3_uri = self._get_s3_uri(model_name)
|
66 |
try:
|
|
|
67 |
config = AutoConfig.from_pretrained(s3_uri, local_files_only=True)
|
68 |
model = AutoModelForCausalLM.from_pretrained(s3_uri, config=config, local_files_only=True)
|
69 |
tokenizer = AutoTokenizer.from_pretrained(s3_uri, config=config, local_files_only=True)
|
|
|
71 |
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
|
72 |
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
|
73 |
|
|
|
74 |
return model, tokenizer
|
75 |
except EnvironmentError:
|
|
|
76 |
try:
|
77 |
+
config = AutoConfig.from_pretrained(model_name)
|
78 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, config=config)
|
79 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, config=config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
if tokenizer.eos_token_id is not None and tokenizer.pad_token_id is None:
|
82 |
tokenizer.pad_token_id = config.pad_token_id or tokenizer.eos_token_id
|
83 |
|
|
|
|
|
84 |
model.save_pretrained(s3_uri)
|
85 |
tokenizer.save_pretrained(s3_uri)
|
|
|
|
|
|
|
|
|
86 |
return model, tokenizer
|
87 |
except Exception as e:
|
|
|
88 |
raise HTTPException(status_code=500, detail=f"Error loading model: {e}")
|
89 |
|
|
|
|
|
|
|
90 |
model_loader = S3ModelLoader(S3_BUCKET_NAME, s3_client)
|
91 |
|
92 |
@app.post("/generate")
|
93 |
+
async def generate(request: GenerateRequest):
|
94 |
try:
|
95 |
+
model_name = request.model_name
|
96 |
+
input_text = request.input_text
|
97 |
+
task_type = request.task_type
|
98 |
+
temperature = request.temperature
|
99 |
+
max_new_tokens = request.max_new_tokens
|
100 |
+
stream = request.stream
|
101 |
+
top_p = request.top_p
|
102 |
+
top_k = request.top_k
|
103 |
+
repetition_penalty = request.repetition_penalty
|
104 |
+
num_return_sequences = request.num_return_sequences
|
105 |
+
do_sample = request.do_sample
|
106 |
+
chunk_delay = request.chunk_delay
|
107 |
+
stop_sequences = request.stop_sequences
|
108 |
+
|
109 |
+
model, tokenizer = await model_loader.load_model_and_tokenizer(model_name)
|
110 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
111 |
model.to(device)
|
112 |
|
113 |
+
generation_config = GenerationConfig(
|
114 |
+
temperature=temperature,
|
115 |
+
max_new_tokens=max_new_tokens,
|
116 |
+
top_p=top_p,
|
117 |
+
top_k=top_k,
|
118 |
+
repetition_penalty=repetition_penalty,
|
119 |
+
do_sample=do_sample,
|
120 |
+
num_return_sequences=num_return_sequences,
|
121 |
+
)
|
122 |
+
|
123 |
+
return StreamingResponse(
|
124 |
+
stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay),
|
125 |
+
media_type="text/plain"
|
126 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
+
except Exception as e:
|
129 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
130 |
+
|
131 |
+
async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay, max_length=2048):
|
132 |
+
encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True, max_length=max_length).to(device)
|
133 |
+
input_length = encoded_input["input_ids"].shape[1]
|
134 |
+
remaining_tokens = max_length - input_length
|
135 |
+
|
136 |
+
if remaining_tokens <= 0:
|
137 |
+
yield ""
|
138 |
+
|
139 |
+
generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens)
|
140 |
+
|
141 |
+
def stop_criteria(input_ids, scores):
|
142 |
+
decoded_output = tokenizer.decode(int(input_ids[0][-1]), skip_special_tokens=True)
|
143 |
+
return decoded_output in stop_sequences
|
144 |
+
|
145 |
+
stopping_criteria = StoppingCriteriaList([stop_criteria])
|
146 |
+
|
147 |
+
output_text = ""
|
148 |
+
outputs = model.generate(
|
149 |
+
**encoded_input,
|
150 |
+
do_sample=generation_config.do_sample,
|
151 |
+
max_new_tokens=generation_config.max_new_tokens,
|
152 |
+
temperature=generation_config.temperature,
|
153 |
+
top_p=generation_config.top_p,
|
154 |
+
top_k=generation_config.top_k,
|
155 |
+
repetition_penalty=generation_config.repetition_penalty,
|
156 |
+
num_return_sequences=generation_config.num_return_sequences,
|
157 |
+
stopping_criteria=stopping_criteria,
|
158 |
+
output_scores=True,
|
159 |
+
return_dict_in_generate=True
|
160 |
+
)
|
161 |
+
|
162 |
+
for output in outputs.sequences:
|
163 |
+
for token_id in output:
|
164 |
+
token = tokenizer.decode(token_id, skip_special_tokens=True)
|
165 |
+
yield token
|
166 |
+
await asyncio.sleep(chunk_delay) # Simula el delay entre tokens
|
167 |
+
|
168 |
+
if stop_sequences and any(stop in output_text for stop in stop_sequences):
|
169 |
+
yield output_text
|
170 |
+
return
|
171 |
+
|
172 |
+
outputs = model.generate(
|
173 |
+
**encoded_input,
|
174 |
+
do_sample=generation_config.do_sample,
|
175 |
+
max_new_tokens=generation_config.max_new_tokens,
|
176 |
+
temperature=generation_config.temperature,
|
177 |
+
top_p=generation_config.top_p,
|
178 |
+
top_k=generation_config.top_k,
|
179 |
+
repetition_penalty=generation_config.repetition_penalty,
|
180 |
+
num_return_sequences=generation_config.num_return_sequences,
|
181 |
+
stopping_criteria=stopping_criteria,
|
182 |
+
output_scores=True,
|
183 |
+
return_dict_in_generate=True
|
184 |
+
)
|
185 |
+
|
186 |
+
@app.post("/generate-image")
|
187 |
+
async def generate_image(request: GenerateRequest):
|
188 |
+
try:
|
189 |
+
validated_body = request
|
190 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
191 |
+
|
192 |
+
image_generator = pipeline("text-to-image", model=validated_body.model_name, device=device)
|
193 |
+
image = image_generator(validated_body.input_text)[0]
|
194 |
+
|
195 |
+
img_byte_arr = BytesIO()
|
196 |
+
image.save(img_byte_arr, format="PNG")
|
197 |
+
img_byte_arr.seek(0)
|
198 |
+
|
199 |
+
return StreamingResponse(img_byte_arr, media_type="image/png")
|
200 |
+
|
201 |
+
except Exception as e:
|
202 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
203 |
+
|
204 |
+
@app.post("/generate-text-to-speech")
|
205 |
+
async def generate_text_to_speech(request: GenerateRequest):
|
206 |
+
try:
|
207 |
+
validated_body = request
|
208 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
209 |
+
|
210 |
+
audio_generator = pipeline("text-to-speech", model=validated_body.model_name, device=device)
|
211 |
+
audio = audio_generator(validated_body.input_text)[0]
|
212 |
+
|
213 |
+
audio_byte_arr = BytesIO()
|
214 |
+
audio.save(audio_byte_arr)
|
215 |
+
audio_byte_arr.seek(0)
|
216 |
+
|
217 |
+
return StreamingResponse(audio_byte_arr, media_type="audio/wav")
|
218 |
|
|
|
|
|
|
|
|
|
219 |
except Exception as e:
|
220 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
|
|
221 |
|
222 |
+
@app.post("/generate-video")
|
223 |
+
async def generate_video(request: GenerateRequest):
|
224 |
+
try:
|
225 |
+
validated_body = request
|
226 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
227 |
+
video_generator = pipeline("text-to-video", model=validated_body.model_name, device=device)
|
228 |
+
video = video_generator(validated_body.input_text)[0]
|
229 |
+
|
230 |
+
video_byte_arr = BytesIO()
|
231 |
+
video.save(video_byte_arr)
|
232 |
+
video_byte_arr.seek(0)
|
233 |
+
|
234 |
+
return StreamingResponse(video_byte_arr, media_type="video/mp4")
|
235 |
+
|
236 |
+
except Exception as e:
|
237 |
+
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
238 |
|
239 |
if __name__ == "__main__":
|
240 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|