Spaces:
Sleeping
Sleeping
Hjgugugjhuhjggg
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -10,16 +10,18 @@ import torch
|
|
10 |
import safetensors.torch
|
11 |
from fastapi.responses import StreamingResponse
|
12 |
from tqdm import tqdm
|
13 |
-
import re
|
14 |
|
|
|
15 |
load_dotenv()
|
16 |
|
|
|
17 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
18 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
19 |
AWS_REGION = os.getenv("AWS_REGION")
|
20 |
-
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
|
21 |
-
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
22 |
|
|
|
23 |
s3_client = boto3.client(
|
24 |
's3',
|
25 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
@@ -29,6 +31,7 @@ s3_client = boto3.client(
|
|
29 |
|
30 |
app = FastAPI()
|
31 |
|
|
|
32 |
class DownloadModelRequest(BaseModel):
|
33 |
model_name: str
|
34 |
pipeline_task: str
|
@@ -46,135 +49,145 @@ class S3DirectStream:
|
|
46 |
|
47 |
def stream_from_s3(self, key):
|
48 |
try:
|
|
|
49 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
50 |
-
return response['Body']
|
51 |
except self.s3_client.exceptions.NoSuchKey:
|
52 |
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
|
53 |
-
except Exception as e:
|
54 |
-
raise HTTPException(status_code=500, detail=f"Error al descargar de S3: {e}")
|
55 |
|
56 |
def file_exists_in_s3(self, key):
|
57 |
try:
|
58 |
self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
|
59 |
return True
|
60 |
-
except self.s3_client.exceptions.ClientError
|
61 |
-
|
62 |
-
return False
|
63 |
-
raise HTTPException(status_code=500, detail=f"Error al verificar archivo en S3: {e}")
|
64 |
|
65 |
def load_model_from_stream(self, model_prefix):
|
66 |
try:
|
67 |
-
|
68 |
-
if
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
if self.file_exists_in_s3(model_path):
|
77 |
-
model_stream = self.stream_from_s3(model_path)
|
78 |
-
model = AutoModelForCausalLM.from_config(config_data)
|
79 |
-
model.load_state_dict(safetensors.torch.load_stream(model_stream))
|
80 |
-
elif model_files:
|
81 |
-
model = AutoModelForCausalLM.from_config(config_data)
|
82 |
-
state_dict = {}
|
83 |
-
for file_name in model_files:
|
84 |
-
file_stream = self.stream_from_s3(f"{model_prefix}/{file_name}")
|
85 |
-
tmp = torch.load(file_stream, map_location="cpu")
|
86 |
-
state_dict.update(tmp)
|
87 |
-
model.load_state_dict(state_dict)
|
88 |
-
else:
|
89 |
-
raise HTTPException(status_code=500, detail="Modelo no encontrado")
|
90 |
-
|
91 |
-
return model
|
92 |
except HTTPException as e:
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
-
|
98 |
-
try:
|
99 |
-
response = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=f"{model_prefix}/pytorch_model-")
|
100 |
-
model_files = []
|
101 |
-
if 'Contents' in response:
|
102 |
-
for obj in response['Contents']:
|
103 |
-
if re.match(r"pytorch_model-\d+-of-\d+", obj['Key'].split('/')[-1]):
|
104 |
-
model_files.append(obj['Key'].split('/')[-1])
|
105 |
-
return model_files
|
106 |
-
except Exception as e:
|
107 |
-
return None
|
108 |
|
109 |
def load_tokenizer_from_stream(self, model_prefix):
|
110 |
try:
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
return self.load_tokenizer_from_stream(model_prefix)
|
119 |
except HTTPException as e:
|
120 |
-
|
121 |
-
|
122 |
-
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer: {e}")
|
123 |
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
def download_and_upload_to_s3(self, model_prefix):
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
|
144 |
@app.post("/predict/")
|
145 |
async def predict(model_request: DownloadModelRequest):
|
146 |
try:
|
|
|
|
|
147 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
148 |
model = streamer.load_model_from_stream(model_request.model_name)
|
149 |
tokenizer = streamer.load_tokenizer_from_stream(model_request.model_name)
|
150 |
|
|
|
151 |
task = model_request.pipeline_task
|
152 |
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "text-to-speech", "text-to-image", "text-to-audio", "text-to-video"]:
|
153 |
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
|
154 |
|
|
|
155 |
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer)
|
|
|
|
|
156 |
input_text = model_request.input_text
|
157 |
outputs = nlp_pipeline(input_text)
|
158 |
|
|
|
159 |
if task in ["text-generation", "translation", "fill-mask", "sentiment-analysis", "question-answering"]:
|
160 |
return {"response": outputs}
|
|
|
161 |
elif task == "text-to-image":
|
162 |
-
|
|
|
163 |
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="image/png")
|
|
|
164 |
elif task == "text-to-audio":
|
165 |
-
|
|
|
166 |
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="audio/wav")
|
|
|
167 |
elif task == "text-to-video":
|
168 |
-
|
|
|
169 |
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="video/mp4")
|
|
|
170 |
else:
|
171 |
raise HTTPException(status_code=400, detail="Tipo de tarea desconocido")
|
172 |
|
173 |
-
except HTTPException as e:
|
174 |
-
raise
|
175 |
except Exception as e:
|
176 |
-
raise HTTPException(status_code=500, detail=f"Error
|
177 |
|
178 |
|
179 |
if __name__ == "__main__":
|
180 |
-
uvicorn.run(app, host="0.0.0.0", port=
|
|
|
10 |
import safetensors.torch
|
11 |
from fastapi.responses import StreamingResponse
|
12 |
from tqdm import tqdm
|
|
|
13 |
|
14 |
+
# Cargar las variables de entorno desde el archivo .env
|
15 |
load_dotenv()
|
16 |
|
17 |
+
# Cargar las credenciales de AWS y el token de Hugging Face desde las variables de entorno
|
18 |
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
|
19 |
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
|
20 |
AWS_REGION = os.getenv("AWS_REGION")
|
21 |
+
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME") # Nombre del bucket de S3
|
22 |
+
HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Token de Hugging Face
|
23 |
|
24 |
+
# Cliente S3 de Amazon
|
25 |
s3_client = boto3.client(
|
26 |
's3',
|
27 |
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
|
|
31 |
|
32 |
app = FastAPI()
|
33 |
|
34 |
+
# Pydantic Model para el cuerpo de la solicitud del endpoint /download_model/
|
35 |
class DownloadModelRequest(BaseModel):
|
36 |
model_name: str
|
37 |
pipeline_task: str
|
|
|
49 |
|
50 |
def stream_from_s3(self, key):
|
51 |
try:
|
52 |
+
print(f"Descargando archivo {key} desde S3...")
|
53 |
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
|
54 |
+
return response['Body'] # Devolver el cuerpo directamente para el StreamingResponse
|
55 |
except self.s3_client.exceptions.NoSuchKey:
|
56 |
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
|
|
|
|
|
57 |
|
58 |
def file_exists_in_s3(self, key):
|
59 |
try:
|
60 |
self.s3_client.head_object(Bucket=self.bucket_name, Key=key)
|
61 |
return True
|
62 |
+
except self.s3_client.exceptions.ClientError:
|
63 |
+
return False
|
|
|
|
|
64 |
|
65 |
def load_model_from_stream(self, model_prefix):
|
66 |
try:
|
67 |
+
print(f"Cargando el modelo {model_prefix} desde S3...")
|
68 |
+
if self.file_exists_in_s3(f"{model_prefix}/config.json") and \
|
69 |
+
(self.file_exists_in_s3(f"{model_prefix}/pytorch_model.bin") or self.file_exists_in_s3(f"{model_prefix}/model.safetensors")):
|
70 |
+
print(f"Modelo {model_prefix} ya existe en S3. No es necesario descargarlo.")
|
71 |
+
return self.load_model_from_existing_s3(model_prefix)
|
72 |
+
|
73 |
+
print(f"Modelo {model_prefix} no encontrado. Procediendo a descargar...")
|
74 |
+
self.download_and_upload_to_s3(model_prefix)
|
75 |
+
return self.load_model_from_stream(model_prefix)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
except HTTPException as e:
|
77 |
+
print(f"Error al cargar el modelo: {e}")
|
78 |
+
return None
|
79 |
+
|
80 |
+
def load_model_from_existing_s3(self, model_prefix):
|
81 |
+
# Cargar el modelo y los archivos necesarios desde S3
|
82 |
+
print(f"Cargando los archivos {model_prefix} desde S3...")
|
83 |
+
config_stream = self.stream_from_s3(f"{model_prefix}/config.json")
|
84 |
+
config_data = config_stream.read().decode("utf-8")
|
85 |
+
|
86 |
+
print(f"Cargando el modelo de lenguaje {model_prefix}...")
|
87 |
+
|
88 |
+
# Verificar si el archivo es un safetensor o un archivo binario
|
89 |
+
if self.file_exists_in_s3(f"{model_prefix}/model.safetensors"):
|
90 |
+
# Usar safetensors si el archivo es de tipo safetensors
|
91 |
+
model_stream = self.stream_from_s3(f"{model_prefix}/model.safetensors")
|
92 |
+
model = AutoModelForCausalLM.from_config(config_data)
|
93 |
+
model.load_state_dict(safetensors.torch.load_stream(model_stream)) # Cargar el modelo utilizando safetensors
|
94 |
+
else:
|
95 |
+
# Cargar el modelo utilizando pytorch si el archivo es .bin
|
96 |
+
model_stream = self.stream_from_s3(f"{model_prefix}/pytorch_model.bin")
|
97 |
+
model = AutoModelForCausalLM.from_config(config_data)
|
98 |
+
model.load_state_dict(torch.load(model_stream, map_location="cpu"))
|
99 |
|
100 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
def load_tokenizer_from_stream(self, model_prefix):
|
103 |
try:
|
104 |
+
if self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
|
105 |
+
print(f"Tokenizer para {model_prefix} ya existe en S3. No es necesario descargarlo.")
|
106 |
+
return self.load_tokenizer_from_existing_s3(model_prefix)
|
107 |
+
|
108 |
+
print(f"Tokenizer para {model_prefix} no encontrado. Procediendo a descargar...")
|
109 |
+
self.download_and_upload_to_s3(model_prefix)
|
110 |
+
return self.load_tokenizer_from_stream(model_prefix)
|
|
|
111 |
except HTTPException as e:
|
112 |
+
print(f"Error al cargar el tokenizer: {e}")
|
113 |
+
return None
|
|
|
114 |
|
115 |
+
def load_tokenizer_from_existing_s3(self, model_prefix):
|
116 |
+
print(f"Cargando el tokenizer para {model_prefix} desde S3...")
|
117 |
+
tokenizer_stream = self.stream_from_s3(f"{model_prefix}/tokenizer.json")
|
118 |
+
tokenizer = AutoTokenizer.from_pretrained(tokenizer_stream)
|
119 |
+
return tokenizer
|
120 |
|
121 |
def download_and_upload_to_s3(self, model_prefix):
|
122 |
+
# URLs de los archivos de Hugging Face
|
123 |
+
model_url = f"https://huggingface.co/{model_prefix}/resolve/main/pytorch_model.bin"
|
124 |
+
safetensors_url = f"https://huggingface.co/{model_prefix}/resolve/main/model.safetensors"
|
125 |
+
tokenizer_url = f"https://huggingface.co/{model_prefix}/resolve/main/tokenizer.json"
|
126 |
+
config_url = f"https://huggingface.co/{model_prefix}/resolve/main/config.json"
|
127 |
+
|
128 |
+
print(f"Descargando y subiendo archivos para el modelo {model_prefix} a S3...")
|
129 |
+
self.download_and_upload_to_s3_url(model_url, f"{model_prefix}/pytorch_model.bin")
|
130 |
+
self.download_and_upload_to_s3_url(safetensors_url, f"{model_prefix}/model.safetensors")
|
131 |
+
self.download_and_upload_to_s3_url(tokenizer_url, f"{model_prefix}/tokenizer.json")
|
132 |
+
self.download_and_upload_to_s3_url(config_url, f"{model_prefix}/config.json")
|
133 |
+
|
134 |
+
def download_and_upload_to_s3_url(self, url: str, s3_key: str):
|
135 |
+
print(f"Descargando archivo desde {url}...")
|
136 |
+
response = requests.get(url)
|
137 |
+
if response.status_code == 200:
|
138 |
+
# Subir archivo a S3
|
139 |
+
print(f"Subiendo archivo a S3 con key {s3_key}...")
|
140 |
+
self.s3_client.put_object(Bucket=self.bucket_name, Key=s3_key, Body=response.content)
|
141 |
+
else:
|
142 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar el archivo desde {url}")
|
143 |
|
144 |
|
145 |
@app.post("/predict/")
|
146 |
async def predict(model_request: DownloadModelRequest):
|
147 |
try:
|
148 |
+
print(f"Recibiendo solicitud para predecir con el modelo {model_request.model_name}...")
|
149 |
+
# Cargar el modelo y tokenizer desde S3
|
150 |
streamer = S3DirectStream(S3_BUCKET_NAME)
|
151 |
model = streamer.load_model_from_stream(model_request.model_name)
|
152 |
tokenizer = streamer.load_tokenizer_from_stream(model_request.model_name)
|
153 |
|
154 |
+
# Obtener el pipeline adecuado según la solicitud
|
155 |
task = model_request.pipeline_task
|
156 |
if task not in ["text-generation", "sentiment-analysis", "translation", "fill-mask", "question-answering", "text-to-speech", "text-to-image", "text-to-audio", "text-to-video"]:
|
157 |
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
|
158 |
|
159 |
+
# Crear el pipeline dinámicamente basado en el tipo de tarea
|
160 |
nlp_pipeline = pipeline(task, model=model, tokenizer=tokenizer)
|
161 |
+
|
162 |
+
# Ejecutar el pipeline con el input_text
|
163 |
input_text = model_request.input_text
|
164 |
outputs = nlp_pipeline(input_text)
|
165 |
|
166 |
+
# Procesar los diferentes tipos de respuestas según el pipeline
|
167 |
if task in ["text-generation", "translation", "fill-mask", "sentiment-analysis", "question-answering"]:
|
168 |
return {"response": outputs}
|
169 |
+
|
170 |
elif task == "text-to-image":
|
171 |
+
# Asumir que outputs es la imagen generada
|
172 |
+
s3_key = f"{model_request.model_name}/generated_image.png" # Definir el key del archivo de imagen
|
173 |
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="image/png")
|
174 |
+
|
175 |
elif task == "text-to-audio":
|
176 |
+
# Asumir que outputs es el audio generado
|
177 |
+
s3_key = f"{model_request.model_name}/generated_audio.wav" # Definir el key del archivo de audio
|
178 |
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="audio/wav")
|
179 |
+
|
180 |
elif task == "text-to-video":
|
181 |
+
# Asumir que outputs es el video generado
|
182 |
+
s3_key = f"{model_request.model_name}/generated_video.mp4" # Definir el key del archivo de video
|
183 |
return StreamingResponse(streamer.stream_from_s3(s3_key), media_type="video/mp4")
|
184 |
+
|
185 |
else:
|
186 |
raise HTTPException(status_code=400, detail="Tipo de tarea desconocido")
|
187 |
|
|
|
|
|
188 |
except Exception as e:
|
189 |
+
raise HTTPException(status_code=500, detail=f"Error al procesar la solicitud: {str(e)}")
|
190 |
|
191 |
|
192 |
if __name__ == "__main__":
|
193 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|