File size: 7,785 Bytes
5f732b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import torch
from torch.utils.data import DataLoader
from torch.nn.utils.rnn import pad_sequence
from tqdm import tqdm
from transformers import (
    DataCollatorForSeq2Seq, AutoTokenizer, AutoModelForSeq2SeqLM,
    Seq2SeqTrainingArguments, Trainer, Seq2SeqTrainer
)


class T5Generator:
    def __init__(self, model_checkpoint):
        self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
        self.data_collator = DataCollatorForSeq2Seq(self.tokenizer)
        self.device = 'cuda' if torch.backends.cuda.is_built() else ('mps' if torch.backends.mps.is_built() else 'cpu')

    def tokenize_function_inputs(self, sample):
        """
        Udf to tokenize the input dataset.
        """
        model_inputs = self.tokenizer(sample['text'], max_length=512, truncation=True)
        labels = self.tokenizer(sample["labels"], max_length=64, truncation=True)
        model_inputs["labels"] = labels["input_ids"]
        return model_inputs
        
    def train(self, tokenized_datasets, **kwargs):
        """
        Train the generative model.
        """
        #Set training arguments
        args = Seq2SeqTrainingArguments(
            **kwargs
        )

        # Define trainer object
        trainer = Seq2SeqTrainer(
            self.model,
            args,
            train_dataset=tokenized_datasets["train"],
            eval_dataset=tokenized_datasets["validation"] if tokenized_datasets.get("validation") is not None else None,
            tokenizer=self.tokenizer,
            data_collator=self.data_collator,
        )
        print("Trainer device:", trainer.args.device)

        # Finetune the model
        torch.cuda.empty_cache()
        print('\nModel training started ....')
        trainer.train()

        # Save best model
        trainer.save_model()
        return trainer

    def get_labels(self, tokenized_dataset, batch_size = 4, max_length = 128, sample_set = 'train'):
        """
        Get the predictions from the trained model.
        """
        def collate_fn(batch):
            input_ids = [torch.tensor(example['input_ids']) for example in batch]
            input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
            return input_ids
        
        dataloader = DataLoader(tokenized_dataset[sample_set], batch_size=batch_size, collate_fn=collate_fn)
        predicted_output = []
        self.model.to(self.device)
        print('Model loaded to: ', self.device)

        for batch in tqdm(dataloader):
            batch = batch.to(self.device)
            output_ids = self.model.generate(batch, max_length = max_length)
            output_texts = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
            for output_text in output_texts:
                predicted_output.append(output_text)
        return predicted_output
    
    def get_metrics(self, y_true, y_pred, is_triplet_extraction=False):
        total_pred = 0
        total_gt = 0
        tp = 0
        if not is_triplet_extraction:
            for gt, pred in zip(y_true, y_pred):
                gt_list = gt.split(', ')
                pred_list = pred.split(', ')
                total_pred+=len(pred_list)
                total_gt+=len(gt_list)
                for gt_val in gt_list:
                    for pred_val in pred_list:
                        if pred_val in gt_val or gt_val in pred_val:
                            tp+=1
                            break

        else:
            for gt, pred in zip(y_true, y_pred):
                gt_list = gt.split(', ')
                pred_list = pred.split(', ')
                total_pred+=len(pred_list)
                total_gt+=len(gt_list)
                for gt_val in gt_list:
                    gt_asp = gt_val.split(':')[0]

                    try:
                        gt_op = gt_val.split(':')[1]
                    except:
                        continue

                    try:
                        gt_sent = gt_val.split(':')[2]
                    except:
                        continue

                    for pred_val in pred_list:
                        pr_asp = pred_val.split(':')[0]

                        try:
                            pr_op = pred_val.split(':')[1]
                        except:
                            continue

                        try:
                            pr_sent = gt_val.split(':')[2]
                        except:
                            continue

                        if pr_asp in gt_asp and pr_op in gt_op and gt_sent == pr_sent:
                            tp+=1

        p = tp/total_pred
        r = tp/total_gt
        return p, r, 2*p*r/(p+r), None


class T5Classifier:
    def __init__(self, model_checkpoint):
        self.tokenizer = AutoTokenizer.from_pretrained(model_checkpoint, force_download = True)
        self.model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, force_download = True)
        self.data_collator = DataCollatorForSeq2Seq(self.tokenizer)
        self.device = 'cuda' if torch.has_cuda else ('mps' if torch.has_mps else 'cpu')

    def tokenize_function_inputs(self, sample):
        """
        Udf to tokenize the input dataset.
        """
        sample['input_ids'] = self.tokenizer(sample["text"], max_length = 512, truncation = True).input_ids
        sample['labels'] = self.tokenizer(sample["labels"], max_length = 64, truncation = True).input_ids
        return sample
        
    def train(self, tokenized_datasets, **kwargs):
        """
        Train the generative model.
        """

        # Set training arguments
        args = Seq2SeqTrainingArguments(
            **kwargs
            )

        # Define trainer object
        trainer = Trainer(
            self.model,
            args,
            train_dataset=tokenized_datasets["train"],
            eval_dataset=tokenized_datasets["validation"] if tokenized_datasets.get("validation") is not None else None,
            tokenizer=self.tokenizer, 
            data_collator = self.data_collator 
        )
        print("Trainer device:", trainer.args.device)

        # Finetune the model
        torch.cuda.empty_cache()
        print('\nModel training started ....')
        trainer.train()

        # Save best model
        trainer.save_model()
        return trainer

    def get_labels(self, tokenized_dataset, batch_size = 4, sample_set = 'train'):
        """
        Get the predictions from the trained model.
        """
        def collate_fn(batch):
            input_ids = [torch.tensor(example['input_ids']) for example in batch]
            input_ids = pad_sequence(input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id)
            return input_ids
        
        dataloader = DataLoader(tokenized_dataset[sample_set], batch_size=batch_size, collate_fn=collate_fn)
        predicted_output = []
        self.model.to(self.device)
        print('Model loaded to: ', self.device)

        for batch in tqdm(dataloader):
            batch = batch.to(self.device)
            output_ids = self.model.generate(batch)
            output_texts = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True)
            for output_text in output_texts:
                predicted_output.append(output_text)
        return predicted_output
    
    def get_metrics(self, y_true, y_pred):
        return precision_score(y_true, y_pred, average='macro'), recall_score(y_true, y_pred, average='macro'), \
            f1_score(y_true, y_pred, average='macro'), accuracy_score(y_true, y_pred)