File size: 1,271 Bytes
7051c9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
import torch

model_name = "mistralai/Mistral-7B-Instruct-v0.2"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
)


tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
    low_cpu_mem_usage=True,
    # load_in_4bit = True,
    quantization_config = bnb_config
)



def generate_text(messages):

    encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
    no_token_encodeds = tokenizer.apply_chat_template(messages, tokenize=False).replace('<s>', "").replace('</s>', "")

    output = model.generate(
        encodeds,
        max_length=200,
        do_sample=True,
        top_k=10,
        num_return_sequences=1,
        eos_token_id=tokenizer.eos_token_id,
    )

    output_text = tokenizer.decode(output[0], skip_special_tokens=True)
    return output_text[len(no_token_encodeds) + 2:]

    # # Remove Prompt Echo from Generated Text
    # cleaned_output_text = output_text.replace(input_text, "")
    # return cleaned_output_text