Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from transformers import AutoProcessor, AutoModelForCausalLM | |
import spaces | |
from PIL import Image | |
import subprocess | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cuda").eval() | |
processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True) | |
TITLE = "# [Docmatix - Florence-2 Demo](https://huggingface.co/datasets/HuggingFaceM4/Docmatix)" | |
DESCRIPTION = "The demo for Docmatix with a Florence-2 model fine-tuned on it. Read more about Docmatix [here](Docmatix)." | |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red', | |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue'] | |
def run_example(task_prompt, image, text_input=None): | |
if text_input is None: | |
prompt = task_prompt | |
else: | |
prompt = task_prompt + text_input | |
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") | |
generated_ids = model.generate( | |
input_ids=inputs["input_ids"], | |
pixel_values=inputs["pixel_values"], | |
max_new_tokens=1024, | |
early_stopping=False, | |
do_sample=False, | |
num_beams=3, | |
) | |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] | |
parsed_answer = processor.post_process_generation( | |
generated_text, | |
task=task_prompt, | |
image_size=(image.width, image.height) | |
) | |
return parsed_answer | |
def process_image(image, text_input=None): | |
image = Image.fromarray(image) # Convert NumPy array to PIL Image | |
task_prompt = '<DocVQA>' | |
results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "") | |
return results | |
css = """ | |
#output { | |
height: 500px; | |
overflow: auto; | |
border: 1px solid #ccc; | |
} | |
""" | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown(TITLE) | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab(label="Florence-2 Image Captioning"): | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="Input Picture") | |
text_input = gr.Textbox(label="Text Input (optional)") | |
submit_btn = gr.Button(value="Submit") | |
with gr.Column(): | |
output_text = gr.Textbox(label="Output Text") | |
gr.Examples( | |
examples=[ | |
["hunt.jpg", 'What is this image?'], | |
["idefics2_architecture.png", 'How many tokens per image does it use?'], | |
["idefics2_architecture.png", "What type of encoder does the model use?"], | |
["image.jpg", "What's the share of Industry Switchers Gained?"] | |
], | |
inputs=[input_img, text_input], | |
outputs=[output_text], | |
fn=process_image, | |
cache_examples=True, | |
label='Try the examples below' | |
) | |
submit_btn.click(process_image, [input_img, text_input], [output_text]) | |
demo.launch(debug=True) |