andito's picture
andito HF staff
Update app.py
7869234 verified
import gradio as gr
from transformers import AutoProcessor, AutoModelForVision2Seq, TextIteratorStreamer
from transformers.image_utils import load_image
from threading import Thread
import re
import time
import torch
import spaces
#import subprocess
#subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct-250M")
model = AutoModelForVision2Seq.from_pretrained("HuggingFaceTB/SmolVLM-Instruct-250M",
torch_dtype=torch.bfloat16,
#_attn_implementation="flash_attention_2"
).to("cuda")
@spaces.GPU
def model_inference(
input_dict, history
):
text = input_dict["text"]
print(input_dict["files"])
if len(input_dict["files"]) > 1:
images = [load_image(image) for image in input_dict["files"]]
elif len(input_dict["files"]) == 1:
images = [load_image(input_dict["files"][0])]
else:
images = []
if text == "" and not images:
gr.Error("Please input a query and optionally image(s).")
if text == "" and images:
gr.Error("Please input a text query along the image(s).")
resulting_messages = [
{
"role": "user",
"content": [{"type": "image"} for _ in range(len(images))] + [
{"type": "text", "text": text}
]
}
]
prompt = processor.apply_chat_template(resulting_messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[images], return_tensors="pt")
inputs = inputs.to('cuda')
generation_args = {
"input_ids": inputs.input_ids,
"pixel_values": inputs.pixel_values,
"attention_mask": inputs.attention_mask,
"num_return_sequences": 1,
"no_repeat_ngram_size": 2,
"max_new_tokens": 500,
"min_new_tokens": 10,
}
# Generate
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
generation_args = dict(inputs, streamer=streamer, max_new_tokens=500)
generated_text = ""
thread = Thread(target=model.generate, kwargs=generation_args)
thread.start()
yield "..."
buffer = ""
for new_text in streamer:
buffer += new_text
generated_text_without_prompt = buffer#[len(ext_buffer):]
time.sleep(0.01)
yield buffer
examples=[
[{"text": "Can you describe this image?", "files": ["example_images/newyork.jpg"]}],
[{"text": "Can you describe this image?", "files": ["example_images/dogs.jpg"]}],
[{"text": "Where do the severe droughts happen according to this diagram?", "files": ["example_images/examples_weather_events.png"]}],
[{"text": "What art era do these artpieces belong to?", "files": ["example_images/rococo.jpg", "example_images/rococo_1.jpg"]}],
[{"text": "Describe this image.", "files": ["example_images/campeones.jpg"]}],
[{"text": "What does this say?", "files": ["example_images/math.jpg"]}],
[{"text": "What is the date in this document?", "files": ["example_images/document.jpg"]}],
[{"text": "What is this UI about?", "files": ["example_images/s2w_example.png"]}],
]
demo = gr.ChatInterface(fn=model_inference, title="SmolVLM-256M: The Smollest VLM ever 💫",
description="Play with [HuggingFaceTB/SmolVLM-Instruct-250M](https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct-250M) in this demo. To get started, upload an image and text or try one of the examples. This demo doesn't use history for the chat, so every chat you start is a new conversation.",
examples=examples,
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"), stop_btn="Stop Generation", multimodal=True,
cache_examples=False
)
demo.launch(debug=True)