Spaces:
Runtime error
Runtime error
HugoLaurencon
commited on
Commit
·
2c00f52
1
Parent(s):
ad8569a
first commit
Browse files- .gitattributes +1 -0
- .gitignore +2 -0
- LICENSE +204 -0
- README.md +14 -22
- app.py +916 -0
- en.arpa.bin +3 -0
- en.sp.model +3 -0
- en_examples_with_stats.json +3 -0
- explanation_filtering_pipeline.pdf +0 -0
- filtering.py +957 -0
- flagged_words.py +1055 -0
- languages_id.py +222 -0
- lid.176.bin +3 -0
- normalization.py +52 -0
- parameters_filtering.py +895 -0
- pt.arpa.bin +3 -0
- pt.sp.model +3 -0
- pt_examples_with_stats.json +3 -0
- requirements.txt +4 -0
- stopwords.py +0 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
*cpython-39.pyc
|
2 |
+
.DS_Store
|
LICENSE
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
------------- LICENSE FOR Bigscience code --------------
|
2 |
+
|
3 |
+
|
4 |
+
Apache License
|
5 |
+
Version 2.0, January 2004
|
6 |
+
http://www.apache.org/licenses/
|
7 |
+
|
8 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
9 |
+
|
10 |
+
1. Definitions.
|
11 |
+
|
12 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
13 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
14 |
+
|
15 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
16 |
+
the copyright owner that is granting the License.
|
17 |
+
|
18 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
19 |
+
other entities that control, are controlled by, or are under common
|
20 |
+
control with that entity. For the purposes of this definition,
|
21 |
+
"control" means (i) the power, direct or indirect, to cause the
|
22 |
+
direction or management of such entity, whether by contract or
|
23 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
24 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
25 |
+
|
26 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
27 |
+
exercising permissions granted by this License.
|
28 |
+
|
29 |
+
"Source" form shall mean the preferred form for making modifications,
|
30 |
+
including but not limited to software source code, documentation
|
31 |
+
source, and configuration files.
|
32 |
+
|
33 |
+
"Object" form shall mean any form resulting from mechanical
|
34 |
+
transformation or translation of a Source form, including but
|
35 |
+
not limited to compiled object code, generated documentation,
|
36 |
+
and conversions to other media types.
|
37 |
+
|
38 |
+
"Work" shall mean the work of authorship, whether in Source or
|
39 |
+
Object form, made available under the License, as indicated by a
|
40 |
+
copyright notice that is included in or attached to the work
|
41 |
+
(an example is provided in the Appendix below).
|
42 |
+
|
43 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
44 |
+
form, that is based on (or derived from) the Work and for which the
|
45 |
+
editorial revisions, annotations, elaborations, or other modifications
|
46 |
+
represent, as a whole, an original work of authorship. For the purposes
|
47 |
+
of this License, Derivative Works shall not include works that remain
|
48 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
49 |
+
the Work and Derivative Works thereof.
|
50 |
+
|
51 |
+
"Contribution" shall mean any work of authorship, including
|
52 |
+
the original version of the Work and any modifications or additions
|
53 |
+
to that Work or Derivative Works thereof, that is intentionally
|
54 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
55 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
56 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
57 |
+
means any form of electronic, verbal, or written communication sent
|
58 |
+
to the Licensor or its representatives, including but not limited to
|
59 |
+
communication on electronic mailing lists, source code control systems,
|
60 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
61 |
+
Licensor for the purpose of discussing and improving the Work, but
|
62 |
+
excluding communication that is conspicuously marked or otherwise
|
63 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
64 |
+
|
65 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
66 |
+
on behalf of whom a Contribution has been received by Licensor and
|
67 |
+
subsequently incorporated within the Work.
|
68 |
+
|
69 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
70 |
+
this License, each Contributor hereby grants to You a perpetual,
|
71 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
72 |
+
copyright license to reproduce, prepare Derivative Works of,
|
73 |
+
publicly display, publicly perform, sublicense, and distribute the
|
74 |
+
Work and such Derivative Works in Source or Object form.
|
75 |
+
|
76 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
77 |
+
this License, each Contributor hereby grants to You a perpetual,
|
78 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
79 |
+
(except as stated in this section) patent license to make, have made,
|
80 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
81 |
+
where such license applies only to those patent claims licensable
|
82 |
+
by such Contributor that are necessarily infringed by their
|
83 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
84 |
+
with the Work to which such Contribution(s) was submitted. If You
|
85 |
+
institute patent litigation against any entity (including a
|
86 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
87 |
+
or a Contribution incorporated within the Work constitutes direct
|
88 |
+
or contributory patent infringement, then any patent licenses
|
89 |
+
granted to You under this License for that Work shall terminate
|
90 |
+
as of the date such litigation is filed.
|
91 |
+
|
92 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
93 |
+
Work or Derivative Works thereof in any medium, with or without
|
94 |
+
modifications, and in Source or Object form, provided that You
|
95 |
+
meet the following conditions:
|
96 |
+
|
97 |
+
(a) You must give any other recipients of the Work or
|
98 |
+
Derivative Works a copy of this License; and
|
99 |
+
|
100 |
+
(b) You must cause any modified files to carry prominent notices
|
101 |
+
stating that You changed the files; and
|
102 |
+
|
103 |
+
(c) You must retain, in the Source form of any Derivative Works
|
104 |
+
that You distribute, all copyright, patent, trademark, and
|
105 |
+
attribution notices from the Source form of the Work,
|
106 |
+
excluding those notices that do not pertain to any part of
|
107 |
+
the Derivative Works; and
|
108 |
+
|
109 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
110 |
+
distribution, then any Derivative Works that You distribute must
|
111 |
+
include a readable copy of the attribution notices contained
|
112 |
+
within such NOTICE file, excluding those notices that do not
|
113 |
+
pertain to any part of the Derivative Works, in at least one
|
114 |
+
of the following places: within a NOTICE text file distributed
|
115 |
+
as part of the Derivative Works; within the Source form or
|
116 |
+
documentation, if provided along with the Derivative Works; or,
|
117 |
+
within a display generated by the Derivative Works, if and
|
118 |
+
wherever such third-party notices normally appear. The contents
|
119 |
+
of the NOTICE file are for informational purposes only and
|
120 |
+
do not modify the License. You may add Your own attribution
|
121 |
+
notices within Derivative Works that You distribute, alongside
|
122 |
+
or as an addendum to the NOTICE text from the Work, provided
|
123 |
+
that such additional attribution notices cannot be construed
|
124 |
+
as modifying the License.
|
125 |
+
|
126 |
+
You may add Your own copyright statement to Your modifications and
|
127 |
+
may provide additional or different license terms and conditions
|
128 |
+
for use, reproduction, or distribution of Your modifications, or
|
129 |
+
for any such Derivative Works as a whole, provided Your use,
|
130 |
+
reproduction, and distribution of the Work otherwise complies with
|
131 |
+
the conditions stated in this License.
|
132 |
+
|
133 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
134 |
+
any Contribution intentionally submitted for inclusion in the Work
|
135 |
+
by You to the Licensor shall be under the terms and conditions of
|
136 |
+
this License, without any additional terms or conditions.
|
137 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
138 |
+
the terms of any separate license agreement you may have executed
|
139 |
+
with Licensor regarding such Contributions.
|
140 |
+
|
141 |
+
6. Trademarks. This License does not grant permission to use the trade
|
142 |
+
names, trademarks, service marks, or product names of the Licensor,
|
143 |
+
except as required for reasonable and customary use in describing the
|
144 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
145 |
+
|
146 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
147 |
+
agreed to in writing, Licensor provides the Work (and each
|
148 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
149 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
150 |
+
implied, including, without limitation, any warranties or conditions
|
151 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
152 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
153 |
+
appropriateness of using or redistributing the Work and assume any
|
154 |
+
risks associated with Your exercise of permissions under this License.
|
155 |
+
|
156 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
157 |
+
whether in tort (including negligence), contract, or otherwise,
|
158 |
+
unless required by applicable law (such as deliberate and grossly
|
159 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
160 |
+
liable to You for damages, including any direct, indirect, special,
|
161 |
+
incidental, or consequential damages of any character arising as a
|
162 |
+
result of this License or out of the use or inability to use the
|
163 |
+
Work (including but not limited to damages for loss of goodwill,
|
164 |
+
work stoppage, computer failure or malfunction, or any and all
|
165 |
+
other commercial damages or losses), even if such Contributor
|
166 |
+
has been advised of the possibility of such damages.
|
167 |
+
|
168 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
169 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
170 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
171 |
+
or other liability obligations and/or rights consistent with this
|
172 |
+
License. However, in accepting such obligations, You may act only
|
173 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
174 |
+
of any other Contributor, and only if You agree to indemnify,
|
175 |
+
defend, and hold each Contributor harmless for any liability
|
176 |
+
incurred by, or claims asserted against, such Contributor by reason
|
177 |
+
of your accepting any such warranty or additional liability.
|
178 |
+
|
179 |
+
END OF TERMS AND CONDITIONS
|
180 |
+
|
181 |
+
APPENDIX: How to apply the Apache License to your work.
|
182 |
+
|
183 |
+
To apply the Apache License to your work, attach the following
|
184 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
185 |
+
replaced with your own identifying information. (Don't include
|
186 |
+
the brackets!) The text should be enclosed in the appropriate
|
187 |
+
comment syntax for the file format. We also recommend that a
|
188 |
+
file or class name and description of purpose be included on the
|
189 |
+
same "printed page" as the copyright notice for easier
|
190 |
+
identification within third-party archives.
|
191 |
+
|
192 |
+
Copyright [2021] [Bigscience]
|
193 |
+
|
194 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
195 |
+
you may not use this file except in compliance with the License.
|
196 |
+
You may obtain a copy of the License at
|
197 |
+
|
198 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
199 |
+
|
200 |
+
Unless required by applicable law or agreed to in writing, software
|
201 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
202 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
203 |
+
See the License for the specific language governing permissions and
|
204 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,8 +1,8 @@
|
|
1 |
---
|
2 |
-
title: Text Data Filtering
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
app_file: app.py
|
8 |
pinned: false
|
@@ -10,36 +10,28 @@ pinned: false
|
|
10 |
|
11 |
# Configuration
|
12 |
|
13 |
-
`title`: _string_
|
14 |
Display title for the Space
|
15 |
|
16 |
-
`emoji`: _string_
|
17 |
Space emoji (emoji-only character allowed)
|
18 |
|
19 |
-
`colorFrom`: _string_
|
20 |
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
21 |
|
22 |
-
`colorTo`: _string_
|
23 |
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
24 |
|
25 |
-
`sdk`: _string_
|
26 |
-
Can be either `gradio
|
27 |
|
28 |
-
`sdk_version` : _string_
|
29 |
Only applicable for `streamlit` SDK.
|
30 |
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
31 |
|
32 |
-
`app_file`: _string_
|
33 |
-
Path to your main application file (which contains either `gradio` or `streamlit` Python code
|
34 |
Path is relative to the root of the repository.
|
35 |
|
36 |
-
`
|
37 |
-
HF model IDs (like "gpt2" or "deepset/roberta-base-squad2") used in the Space.
|
38 |
-
Will be parsed automatically from your code if not specified here.
|
39 |
-
|
40 |
-
`datasets`: _List[string]_
|
41 |
-
HF dataset IDs (like "common_voice" or "oscar-corpus/OSCAR-2109") used in the Space.
|
42 |
-
Will be parsed automatically from your code if not specified here.
|
43 |
-
|
44 |
-
`pinned`: _boolean_
|
45 |
Whether the Space stays on top of your list.
|
|
|
1 |
---
|
2 |
+
title: Text Data Filtering
|
3 |
+
emoji: 👁
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: pink
|
6 |
sdk: streamlit
|
7 |
app_file: app.py
|
8 |
pinned: false
|
|
|
10 |
|
11 |
# Configuration
|
12 |
|
13 |
+
`title`: _string_
|
14 |
Display title for the Space
|
15 |
|
16 |
+
`emoji`: _string_
|
17 |
Space emoji (emoji-only character allowed)
|
18 |
|
19 |
+
`colorFrom`: _string_
|
20 |
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
21 |
|
22 |
+
`colorTo`: _string_
|
23 |
Color for Thumbnail gradient (red, yellow, green, blue, indigo, purple, pink, gray)
|
24 |
|
25 |
+
`sdk`: _string_
|
26 |
+
Can be either `gradio` or `streamlit`
|
27 |
|
28 |
+
`sdk_version` : _string_
|
29 |
Only applicable for `streamlit` SDK.
|
30 |
See [doc](https://hf.co/docs/hub/spaces) for more info on supported versions.
|
31 |
|
32 |
+
`app_file`: _string_
|
33 |
+
Path to your main application file (which contains either `gradio` or `streamlit` Python code).
|
34 |
Path is relative to the root of the repository.
|
35 |
|
36 |
+
`pinned`: _boolean_
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
Whether the Space stays on top of your list.
|
app.py
ADDED
@@ -0,0 +1,916 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Run with: streamlit run visualization.py
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
import os
|
6 |
+
|
7 |
+
from io import StringIO
|
8 |
+
import base64
|
9 |
+
import json
|
10 |
+
import pandas as pd
|
11 |
+
|
12 |
+
pd.options.mode.chained_assignment = None
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
import matplotlib.pyplot as plt
|
17 |
+
|
18 |
+
from filtering import LoadParameters, ModifyingDocuments, Filtering
|
19 |
+
from languages_id import langs_id
|
20 |
+
|
21 |
+
|
22 |
+
class Visualization_for_lang:
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
path_data,
|
26 |
+
lang,
|
27 |
+
num_docs,
|
28 |
+
num_docs_for_words,
|
29 |
+
max_len_text_display,
|
30 |
+
lang_dataset_id,
|
31 |
+
path_fasttext_model,
|
32 |
+
path_sentencepiece_model,
|
33 |
+
path_kenlm_model,
|
34 |
+
):
|
35 |
+
self.path_data = path_data
|
36 |
+
self.lang = lang
|
37 |
+
self.num_docs = num_docs
|
38 |
+
self.num_docs_for_words = num_docs_for_words
|
39 |
+
self.max_len_text_display = max_len_text_display
|
40 |
+
|
41 |
+
self.lang_dataset_id = lang_dataset_id
|
42 |
+
self.param = LoadParameters.load_parameters(lang_dataset_id)
|
43 |
+
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
|
44 |
+
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
|
45 |
+
self.model_lang_id = LoadParameters.load_model_lang_id(
|
46 |
+
lang_dataset_id, path_fasttext_model
|
47 |
+
)
|
48 |
+
self.sentencepiece_model = LoadParameters.load_sentencepiece_model(
|
49 |
+
lang_dataset_id, path_sentencepiece_model
|
50 |
+
)
|
51 |
+
self.sentencepiece_model_tok = (
|
52 |
+
self.sentencepiece_model if self.param["tokenization"] else None
|
53 |
+
)
|
54 |
+
self.kenlm_model = LoadParameters.load_kenlm_model(
|
55 |
+
lang_dataset_id, path_kenlm_model
|
56 |
+
)
|
57 |
+
|
58 |
+
def set_title(self):
|
59 |
+
st.title(f"Filtering visualization for {self.lang}")
|
60 |
+
|
61 |
+
def open_data(self):
|
62 |
+
with open(self.path_data) as json_file:
|
63 |
+
data = json.load(json_file)
|
64 |
+
|
65 |
+
self.num_docs = min(self.num_docs, len(data))
|
66 |
+
self.num_docs_for_words = min(self.num_docs_for_words, len(data))
|
67 |
+
|
68 |
+
if "words" in data[0]:
|
69 |
+
words = [doc["words"] for doc in data[: self.num_docs_for_words]]
|
70 |
+
words = [word for doc in words for word in doc]
|
71 |
+
self.words = pd.DataFrame(words)
|
72 |
+
else:
|
73 |
+
self.words = None
|
74 |
+
|
75 |
+
docs = data[: self.num_docs]
|
76 |
+
for doc in docs:
|
77 |
+
if not (self.words is None):
|
78 |
+
del doc["words"]
|
79 |
+
if len(doc["text"]) > self.max_len_text_display:
|
80 |
+
doc["text"] = (
|
81 |
+
doc["text"][: self.max_len_text_display]
|
82 |
+
+ " [...] [THIS LONG TEXT HAS BEEN TRUNCATED FOR DISPLAY REASONS]"
|
83 |
+
)
|
84 |
+
self.docs_checkpoint = pd.DataFrame(docs)
|
85 |
+
self.docs = self.docs_checkpoint
|
86 |
+
|
87 |
+
@staticmethod
|
88 |
+
def print_discarded_by_cond(cond):
|
89 |
+
st.caption(
|
90 |
+
f"{(len(cond) - np.sum(1*cond)) / len(cond) * 100:.2f}% of the total is discarded with this filter."
|
91 |
+
)
|
92 |
+
|
93 |
+
@staticmethod
|
94 |
+
def plot_hist(dataframe, key, num_bins=50):
|
95 |
+
checkbox = st.checkbox(
|
96 |
+
"Diplay distribution", value=True, key=f"display_distribution_{key[0]}"
|
97 |
+
)
|
98 |
+
if checkbox:
|
99 |
+
fig, ax = plt.subplots()
|
100 |
+
val = dataframe[key[0]].values
|
101 |
+
if np.median(val) != 0:
|
102 |
+
val = val[
|
103 |
+
abs(val - np.median(val))
|
104 |
+
< 9 * np.median(np.absolute(val - np.median(val)))
|
105 |
+
]
|
106 |
+
ax.hist(val, bins=num_bins, density=True)
|
107 |
+
ax.set_title(" ".join(key[0].split("_")))
|
108 |
+
ax.axvline(x=key[1], color="r", linestyle="dashed")
|
109 |
+
st.pyplot(fig)
|
110 |
+
|
111 |
+
@staticmethod
|
112 |
+
def display_dataset(dataframe, cond, description, type_of_examples):
|
113 |
+
displayed_examples = dataframe.loc[cond]
|
114 |
+
st.subheader(
|
115 |
+
f"{description}: {len(displayed_examples)} {type_of_examples} ({len(displayed_examples) / len(dataframe.index) * 100:.2f}%)"
|
116 |
+
)
|
117 |
+
st.markdown(
|
118 |
+
"Click on a column to sort by it, place the cursor on the text to display it."
|
119 |
+
)
|
120 |
+
st.dataframe(displayed_examples)
|
121 |
+
|
122 |
+
def filtering_of_docs(self):
|
123 |
+
def set_sliders():
|
124 |
+
columns = list(self.docs)
|
125 |
+
keys = []
|
126 |
+
conds = {}
|
127 |
+
|
128 |
+
def get_cond(key, cutoff, max_cutoff):
|
129 |
+
if max_cutoff:
|
130 |
+
return self.docs[key] <= cutoff
|
131 |
+
return self.docs[key] >= cutoff
|
132 |
+
|
133 |
+
if "number_words" in columns:
|
134 |
+
with st.sidebar.expander("Number of words"):
|
135 |
+
cutoff_def = "If the number of words of a document is lower than this number, the document is removed."
|
136 |
+
max_nb_words = int(np.max(self.docs["number_words"])) + 1
|
137 |
+
cutoff_min_number_words = st.slider(
|
138 |
+
cutoff_def, 0, min(max_nb_words, 500), 0
|
139 |
+
)
|
140 |
+
new_key = ("number_words", cutoff_min_number_words, False)
|
141 |
+
keys.append(new_key)
|
142 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
143 |
+
cond_1 = get_cond(new_key[0], new_key[1], new_key[2])
|
144 |
+
Visualization_for_lang.print_discarded_by_cond(cond_1)
|
145 |
+
|
146 |
+
cutoff_def = "If the number of words of a document is higher than this number, the document is removed."
|
147 |
+
cutoff_max_number_words = st.slider(
|
148 |
+
cutoff_def, 0, max_nb_words, max_nb_words
|
149 |
+
)
|
150 |
+
new_key = ("number_words", cutoff_max_number_words, True)
|
151 |
+
keys.append(new_key)
|
152 |
+
cond_2 = get_cond(new_key[0], new_key[1], new_key[2])
|
153 |
+
Visualization_for_lang.print_discarded_by_cond(cond_2)
|
154 |
+
|
155 |
+
conds["number_words"] = [cond_1, cond_2]
|
156 |
+
|
157 |
+
if "character_repetition_ratio" in columns:
|
158 |
+
with st.sidebar.expander("Character repetition ratio"):
|
159 |
+
val_repetitions_lengths = list(
|
160 |
+
self.docs["character_repetition_ratio"].iloc[0].keys()
|
161 |
+
)
|
162 |
+
default_index = (
|
163 |
+
val_repetitions_lengths.index("10")
|
164 |
+
if "10" in val_repetitions_lengths
|
165 |
+
else 0
|
166 |
+
)
|
167 |
+
label_selectbox = "Length of repetitions in characters (that will influence the character repetition ratio)."
|
168 |
+
repetitions_length = st.selectbox(
|
169 |
+
label=label_selectbox,
|
170 |
+
options=val_repetitions_lengths,
|
171 |
+
index=default_index,
|
172 |
+
)
|
173 |
+
st.caption(
|
174 |
+
"Choosing a higher or lower number does not mean that the filtering "
|
175 |
+
"is stronger or weaker. Be careful, choosing a low number (below 5 for languages like English) "
|
176 |
+
"tends to associate a high character repetition ratio to very long documents (like book chapters), but with "
|
177 |
+
"few or no repetitions, simply because their length gives them more diversity, and we do "
|
178 |
+
"not want to discard such documents. It is generally better to increase this number, so that false "
|
179 |
+
"positives are very short documents (which we want to delete anyway) rather than long ones. However, "
|
180 |
+
"a low number can be useful for Chinese, where a character can designate a whole word."
|
181 |
+
)
|
182 |
+
self.docs["character_repetition_ratio"] = self.docs_checkpoint[
|
183 |
+
"character_repetition_ratio"
|
184 |
+
]
|
185 |
+
for i in range(len(self.docs["character_repetition_ratio"])):
|
186 |
+
self.docs["character_repetition_ratio"].iloc[i] = self.docs[
|
187 |
+
"character_repetition_ratio"
|
188 |
+
].iloc[i][repetitions_length]
|
189 |
+
|
190 |
+
cutoff_def = "If the character repetition ratio of a document is higher than this number, the document is removed."
|
191 |
+
cutoff_character_repetition_ratio = st.slider(
|
192 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
193 |
+
)
|
194 |
+
new_key = (
|
195 |
+
"character_repetition_ratio",
|
196 |
+
cutoff_character_repetition_ratio,
|
197 |
+
True,
|
198 |
+
repetitions_length,
|
199 |
+
)
|
200 |
+
keys.append(new_key)
|
201 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
202 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
203 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
204 |
+
conds["character_repetition_ratio"] = [cond]
|
205 |
+
|
206 |
+
if "word_repetition_ratio" in columns:
|
207 |
+
with st.sidebar.expander("Word repetition ratio"):
|
208 |
+
val_repetitions_lengths = list(
|
209 |
+
self.docs["word_repetition_ratio"].iloc[0].keys()
|
210 |
+
)
|
211 |
+
default_index = (
|
212 |
+
val_repetitions_lengths.index("5")
|
213 |
+
if "5" in val_repetitions_lengths
|
214 |
+
else 0
|
215 |
+
)
|
216 |
+
label_selectbox = "Length of repetitions in words (that will influence the word repetition ratio)."
|
217 |
+
repetitions_length = st.selectbox(
|
218 |
+
label=label_selectbox,
|
219 |
+
options=val_repetitions_lengths,
|
220 |
+
index=default_index,
|
221 |
+
)
|
222 |
+
st.caption(
|
223 |
+
"Choosing a higher or lower number does not mean that the filtering "
|
224 |
+
"is stronger or weaker. Be careful, choosing a low number (like 3) could "
|
225 |
+
"tend to associate a high word repetition ratio to very long documents (like book chapters), but with "
|
226 |
+
"few or no repetitions, simply because their length gives them more diversity, and we do "
|
227 |
+
"not want to discard such documents. It is generally better to increase a bit this number, so that false "
|
228 |
+
"positives are very short documents (which we want to delete anyway) rather than long ones."
|
229 |
+
)
|
230 |
+
self.docs["word_repetition_ratio"] = self.docs_checkpoint[
|
231 |
+
"word_repetition_ratio"
|
232 |
+
]
|
233 |
+
for i in range(len(self.docs["word_repetition_ratio"])):
|
234 |
+
self.docs["word_repetition_ratio"].iloc[i] = self.docs[
|
235 |
+
"word_repetition_ratio"
|
236 |
+
].iloc[i][repetitions_length]
|
237 |
+
|
238 |
+
cutoff_def = "If the word repetition ratio of a document is higher than this number, the document is removed."
|
239 |
+
cutoff_word_repetition_ratio = st.slider(
|
240 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
241 |
+
)
|
242 |
+
new_key = (
|
243 |
+
"word_repetition_ratio",
|
244 |
+
cutoff_word_repetition_ratio,
|
245 |
+
True,
|
246 |
+
repetitions_length,
|
247 |
+
)
|
248 |
+
keys.append(new_key)
|
249 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
250 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
251 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
252 |
+
conds["word_repetition_ratio"] = [cond]
|
253 |
+
|
254 |
+
if "special_characters_ratio" in columns:
|
255 |
+
with st.sidebar.expander("Special characters ratio"):
|
256 |
+
cutoff_def = "If the special characters ratio of a document is higher than this number, the document is removed."
|
257 |
+
cutoff_special_characters_ratio = st.slider(
|
258 |
+
cutoff_def, 0.0, 1.0, 1.0, step=0.01
|
259 |
+
)
|
260 |
+
new_key = (
|
261 |
+
"special_characters_ratio",
|
262 |
+
cutoff_special_characters_ratio,
|
263 |
+
True,
|
264 |
+
)
|
265 |
+
keys.append(new_key)
|
266 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
267 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
268 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
269 |
+
conds["special_characters_ratio"] = [cond]
|
270 |
+
|
271 |
+
if "stopwords_ratio" in columns:
|
272 |
+
with st.sidebar.expander("Stop words ratio"):
|
273 |
+
stopwords_file = st.file_uploader(
|
274 |
+
"Upload your own list of stop words (one per line). If there is none, the default one is used."
|
275 |
+
)
|
276 |
+
if stopwords_file:
|
277 |
+
new_stopwords = StringIO(
|
278 |
+
stopwords_file.getvalue().decode("utf-8")
|
279 |
+
).read()
|
280 |
+
new_stopwords = set(new_stopwords.split("\n"))
|
281 |
+
self.docs["stopwords_ratio"] = self.docs_checkpoint[
|
282 |
+
"stopwords_ratio"
|
283 |
+
]
|
284 |
+
for i in range(len(self.docs["stopwords_ratio"])):
|
285 |
+
self.docs["stopwords_ratio"].iloc[
|
286 |
+
i
|
287 |
+
] = Filtering.compute_stopwords_ratio(
|
288 |
+
self.docs["text"].iloc[i],
|
289 |
+
self.sentencepiece_model_tok,
|
290 |
+
self.param["strip_characters"],
|
291 |
+
self.param["cond_words_augmentation"],
|
292 |
+
self.param["words_augmentation_group_sizes"],
|
293 |
+
self.param["words_augmentation_join_char"],
|
294 |
+
new_stopwords,
|
295 |
+
)
|
296 |
+
cutoff_def = "If the stop words ratio of a document is lower than this number, the document is removed."
|
297 |
+
cutoff_stopwords_ratio = st.slider(
|
298 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
299 |
+
)
|
300 |
+
new_key = ("stopwords_ratio", cutoff_stopwords_ratio, False)
|
301 |
+
keys.append(new_key)
|
302 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
303 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
304 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
305 |
+
conds["stopwords_ratio"] = [cond]
|
306 |
+
|
307 |
+
if "flagged_words_ratio" in columns:
|
308 |
+
with st.sidebar.expander("Flagged words ratio"):
|
309 |
+
flagged_words_file = st.file_uploader(
|
310 |
+
"Upload your own list of flagged words (one per line). If there is none, the default one is used."
|
311 |
+
)
|
312 |
+
if flagged_words_file:
|
313 |
+
new_flagged_words = StringIO(
|
314 |
+
flagged_words_file.getvalue().decode("utf-8")
|
315 |
+
).read()
|
316 |
+
new_flagged_words = set(new_flagged_words.split("\n"))
|
317 |
+
self.docs["flagged_words_ratio"] = self.docs_checkpoint[
|
318 |
+
"flagged_words_ratio"
|
319 |
+
]
|
320 |
+
for i in range(len(self.docs["flagged_words_ratio"])):
|
321 |
+
self.docs["flagged_words_ratio"].iloc[
|
322 |
+
i
|
323 |
+
] = Filtering.compute_flagged_words_ratio(
|
324 |
+
self.docs["text"].iloc[i],
|
325 |
+
self.sentencepiece_model_tok,
|
326 |
+
self.param["strip_characters"],
|
327 |
+
self.param["cond_words_augmentation"],
|
328 |
+
self.param["words_augmentation_group_sizes"],
|
329 |
+
self.param["words_augmentation_join_char"],
|
330 |
+
new_flagged_words,
|
331 |
+
)
|
332 |
+
cutoff_def = "If the flagged words ratio of a document is higher than this number, the document is removed."
|
333 |
+
max_fwr = np.max(self.docs["flagged_words_ratio"])
|
334 |
+
max_fwr = np.ceil(max_fwr * 1000) / 1000
|
335 |
+
max_fwr = float(max_fwr)
|
336 |
+
cutoff_flagged_words_ratio = st.slider(
|
337 |
+
cutoff_def,
|
338 |
+
0.000,
|
339 |
+
max_fwr,
|
340 |
+
max_fwr,
|
341 |
+
step=0.001,
|
342 |
+
format="%f",
|
343 |
+
)
|
344 |
+
new_key = ("flagged_words_ratio", cutoff_flagged_words_ratio, True)
|
345 |
+
keys.append(new_key)
|
346 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
347 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
348 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
349 |
+
conds["flagged_words_ratio"] = [cond]
|
350 |
+
|
351 |
+
if "lang_id_score" in columns:
|
352 |
+
with st.sidebar.expander("Language ID confidence score"):
|
353 |
+
cutoff_def = "If the confidence score for the language identification prediction of a document is lower than this number, the document is removed."
|
354 |
+
cutoff_lang_id_score = st.slider(
|
355 |
+
cutoff_def, 0.0, 1.0, 0.0, step=0.01
|
356 |
+
)
|
357 |
+
new_key = ("lang_id_score", cutoff_lang_id_score, False)
|
358 |
+
keys.append(new_key)
|
359 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
360 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
361 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
362 |
+
conds["lang_id_score"] = [cond]
|
363 |
+
|
364 |
+
if "perplexity_score" in columns:
|
365 |
+
with st.sidebar.expander("Perplexity score"):
|
366 |
+
cutoff_def = "If the perplexity score of a document is higher than this number, the document is removed."
|
367 |
+
max_pp = int(np.max(self.docs["perplexity_score"])) + 1
|
368 |
+
cutoff_perplexity_score = st.slider(cutoff_def, 0, max_pp, max_pp)
|
369 |
+
new_key = ("perplexity_score", cutoff_perplexity_score, True)
|
370 |
+
keys.append(new_key)
|
371 |
+
Visualization_for_lang.plot_hist(self.docs, new_key)
|
372 |
+
cond = get_cond(new_key[0], new_key[1], new_key[2])
|
373 |
+
Visualization_for_lang.print_discarded_by_cond(cond)
|
374 |
+
conds["perplexity_score"] = [cond]
|
375 |
+
|
376 |
+
return keys, conds
|
377 |
+
|
378 |
+
with st.expander(
|
379 |
+
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
380 |
+
):
|
381 |
+
st.header(
|
382 |
+
f"Filtering on documents, for {self.num_docs} {self.lang} documents"
|
383 |
+
)
|
384 |
+
|
385 |
+
if "labels" in list(self.docs):
|
386 |
+
chosen_label = st.selectbox(
|
387 |
+
label="Consider only documents that include the following label",
|
388 |
+
options=[
|
389 |
+
"All",
|
390 |
+
"NA: Narrative",
|
391 |
+
"IN: Informational Description",
|
392 |
+
"OP: Opinion",
|
393 |
+
"ID: Interactive Discussion",
|
394 |
+
"HI: How-to/Instruction",
|
395 |
+
"IP: Informational Persuasion",
|
396 |
+
"LY: Lyrical",
|
397 |
+
"SP: Spoken",
|
398 |
+
],
|
399 |
+
)
|
400 |
+
chosen_label = chosen_label.split(":")[0]
|
401 |
+
if chosen_label != "All":
|
402 |
+
cond_label = list(
|
403 |
+
self.docs["labels"].apply(
|
404 |
+
lambda x: True if chosen_label in x else False
|
405 |
+
)
|
406 |
+
)
|
407 |
+
self.docs = self.docs[cond_label]
|
408 |
+
|
409 |
+
if self.docs.empty:
|
410 |
+
st.markdown(
|
411 |
+
"No document to display, please try to select a different label."
|
412 |
+
)
|
413 |
+
self.keys = []
|
414 |
+
self.parameters = []
|
415 |
+
|
416 |
+
else:
|
417 |
+
st.sidebar.subheader("Parameters of the filtering on documents")
|
418 |
+
self.keys, conds = set_sliders()
|
419 |
+
self.parameters = self.keys * 1
|
420 |
+
|
421 |
+
all_conds = [
|
422 |
+
subcond for cond in list(conds.values()) for subcond in cond
|
423 |
+
]
|
424 |
+
all_conds = np.all(all_conds, axis=0)
|
425 |
+
|
426 |
+
Visualization_for_lang.display_dataset(
|
427 |
+
self.docs, np.invert(all_conds), "Discarded documents", "docs"
|
428 |
+
)
|
429 |
+
|
430 |
+
# st.subheader("Display discarded documents by filter")
|
431 |
+
display_discarded_documents_by_filter = st.checkbox(
|
432 |
+
"Display discarded documents by filter"
|
433 |
+
)
|
434 |
+
|
435 |
+
if display_discarded_documents_by_filter:
|
436 |
+
columns = list(self.docs)
|
437 |
+
|
438 |
+
if "number_words" in columns:
|
439 |
+
cond_filter = np.invert(np.all(conds["number_words"], axis=0))
|
440 |
+
Visualization_for_lang.display_dataset(
|
441 |
+
self.docs,
|
442 |
+
cond_filter,
|
443 |
+
"Discarded documents for the filter on the number of words",
|
444 |
+
"docs",
|
445 |
+
)
|
446 |
+
|
447 |
+
if "character_repetition_ratio" in columns:
|
448 |
+
cond_filter = np.invert(
|
449 |
+
np.all(conds["character_repetition_ratio"], axis=0)
|
450 |
+
)
|
451 |
+
Visualization_for_lang.display_dataset(
|
452 |
+
self.docs,
|
453 |
+
cond_filter,
|
454 |
+
"Discarded documents for the filter on the character repetition ratio",
|
455 |
+
"docs",
|
456 |
+
)
|
457 |
+
|
458 |
+
if "word_repetition_ratio" in columns:
|
459 |
+
cond_filter = np.invert(
|
460 |
+
np.all(conds["word_repetition_ratio"], axis=0)
|
461 |
+
)
|
462 |
+
Visualization_for_lang.display_dataset(
|
463 |
+
self.docs,
|
464 |
+
cond_filter,
|
465 |
+
"Discarded documents for the filter on the word repetition ratio",
|
466 |
+
"docs",
|
467 |
+
)
|
468 |
+
|
469 |
+
if "special_characters_ratio" in columns:
|
470 |
+
cond_filter = np.invert(
|
471 |
+
np.all(conds["special_characters_ratio"], axis=0)
|
472 |
+
)
|
473 |
+
Visualization_for_lang.display_dataset(
|
474 |
+
self.docs,
|
475 |
+
cond_filter,
|
476 |
+
"Discarded documents for the filter on the special characters ratio",
|
477 |
+
"docs",
|
478 |
+
)
|
479 |
+
|
480 |
+
if "stopwords_ratio" in columns:
|
481 |
+
cond_filter = np.invert(
|
482 |
+
np.all(conds["stopwords_ratio"], axis=0)
|
483 |
+
)
|
484 |
+
Visualization_for_lang.display_dataset(
|
485 |
+
self.docs,
|
486 |
+
cond_filter,
|
487 |
+
"Discarded documents for the filter on the stop words ratio",
|
488 |
+
"docs",
|
489 |
+
)
|
490 |
+
|
491 |
+
if "flagged_words_ratio" in columns:
|
492 |
+
cond_filter = np.invert(
|
493 |
+
np.all(conds["flagged_words_ratio"], axis=0)
|
494 |
+
)
|
495 |
+
Visualization_for_lang.display_dataset(
|
496 |
+
self.docs,
|
497 |
+
cond_filter,
|
498 |
+
"Discarded documents for the filter on the flagged words ratio",
|
499 |
+
"docs",
|
500 |
+
)
|
501 |
+
|
502 |
+
if "lang_id_score" in columns:
|
503 |
+
cond_filter = np.invert(np.all(conds["lang_id_score"], axis=0))
|
504 |
+
Visualization_for_lang.display_dataset(
|
505 |
+
self.docs,
|
506 |
+
cond_filter,
|
507 |
+
"Discarded documents for the filter on the language identification confidence score",
|
508 |
+
"docs",
|
509 |
+
)
|
510 |
+
|
511 |
+
if "perplexity_score" in columns:
|
512 |
+
cond_filter = np.invert(
|
513 |
+
np.all(conds["perplexity_score"], axis=0)
|
514 |
+
)
|
515 |
+
Visualization_for_lang.display_dataset(
|
516 |
+
self.docs,
|
517 |
+
cond_filter,
|
518 |
+
"Discarded documents for the filter on the perplexity score",
|
519 |
+
"docs",
|
520 |
+
)
|
521 |
+
|
522 |
+
Visualization_for_lang.display_dataset(
|
523 |
+
self.docs, all_conds, "Retained documents", "docs"
|
524 |
+
)
|
525 |
+
|
526 |
+
st.header("Download data")
|
527 |
+
|
528 |
+
with open(self.path_data) as json_file:
|
529 |
+
btn = st.download_button(
|
530 |
+
label="Download data as json",
|
531 |
+
data=json_file,
|
532 |
+
file_name="data.json",
|
533 |
+
)
|
534 |
+
|
535 |
+
def filtering_of_words(self):
|
536 |
+
if not (self.words is None):
|
537 |
+
columns = list(self.words)
|
538 |
+
|
539 |
+
st.sidebar.subheader("Parameter of the filtering on words")
|
540 |
+
|
541 |
+
conds_words = {}
|
542 |
+
|
543 |
+
if "len_word" in columns:
|
544 |
+
with st.sidebar.expander("Length of words"):
|
545 |
+
cutoff_def = "If the length of a word is higher than this number, the word is removed."
|
546 |
+
max_len_word = min(int(np.max(self.words["len_word"])) + 1, 200)
|
547 |
+
cutoff_word = st.slider(cutoff_def, 0, max_len_word, max_len_word)
|
548 |
+
new_key = ("len_word", cutoff_word, True)
|
549 |
+
self.parameters.append(new_key)
|
550 |
+
Visualization_for_lang.plot_hist(self.words, new_key)
|
551 |
+
cond_len_words = self.words["len_word"] <= cutoff_word
|
552 |
+
Visualization_for_lang.print_discarded_by_cond(cond_len_words)
|
553 |
+
conds_words["len_word"] = cond_len_words
|
554 |
+
|
555 |
+
if "incorrect_substrings" in columns:
|
556 |
+
with st.sidebar.expander("Words with incorrect substrings"):
|
557 |
+
incorrect_substrings = st.checkbox(
|
558 |
+
"Remove words with incorrect substrings."
|
559 |
+
)
|
560 |
+
self.parameters.append(
|
561 |
+
("incorrect_substrings", incorrect_substrings)
|
562 |
+
)
|
563 |
+
|
564 |
+
checkbox = st.checkbox(
|
565 |
+
"Diplay distribution",
|
566 |
+
value=True,
|
567 |
+
key="display_distribution_incorrect_substrings",
|
568 |
+
)
|
569 |
+
if checkbox:
|
570 |
+
incor_sub = np.array(self.words["incorrect_substrings"]) * 1
|
571 |
+
with_incor_sub = np.sum(incor_sub)
|
572 |
+
without_incor_sub = len(incor_sub) - with_incor_sub
|
573 |
+
st.markdown(
|
574 |
+
f"Number of words with incorrect substrings: {with_incor_sub}"
|
575 |
+
)
|
576 |
+
st.markdown(
|
577 |
+
f"Number of words without incorrect substrings: {without_incor_sub}"
|
578 |
+
)
|
579 |
+
|
580 |
+
if incorrect_substrings:
|
581 |
+
cond_incorrect_substrings = np.invert(
|
582 |
+
self.words["incorrect_substrings"]
|
583 |
+
)
|
584 |
+
else:
|
585 |
+
cond_incorrect_substrings = np.array(
|
586 |
+
[
|
587 |
+
True
|
588 |
+
for i in range(len(self.words["incorrect_substrings"]))
|
589 |
+
]
|
590 |
+
)
|
591 |
+
Visualization_for_lang.print_discarded_by_cond(
|
592 |
+
cond_incorrect_substrings
|
593 |
+
)
|
594 |
+
conds_words["incorrect_substrings"] = cond_incorrect_substrings
|
595 |
+
|
596 |
+
all_conds_words = np.all(list(conds_words.values()), axis=0)
|
597 |
+
|
598 |
+
with st.expander(
|
599 |
+
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents"
|
600 |
+
):
|
601 |
+
st.header(
|
602 |
+
f"Filtering on words, for {self.num_docs_for_words} {self.lang} documents"
|
603 |
+
)
|
604 |
+
|
605 |
+
st.markdown(
|
606 |
+
f"Since the number of words is way larger than the number of documents, "
|
607 |
+
f"we consider in this section words for only {self.num_docs_for_words} documents."
|
608 |
+
)
|
609 |
+
|
610 |
+
Visualization_for_lang.display_dataset(
|
611 |
+
self.words, np.invert(all_conds_words), "Discarded words", "words"
|
612 |
+
)
|
613 |
+
|
614 |
+
# st.subheader("Display discarded words by filter")
|
615 |
+
display_discarded_words_by_filter = st.checkbox(
|
616 |
+
"Display discarded words by filter"
|
617 |
+
)
|
618 |
+
|
619 |
+
if display_discarded_words_by_filter:
|
620 |
+
|
621 |
+
if "len_word" in columns:
|
622 |
+
cond_filter = np.invert(conds_words["len_word"])
|
623 |
+
Visualization_for_lang.display_dataset(
|
624 |
+
self.words,
|
625 |
+
cond_filter,
|
626 |
+
"Discarded words for the filter on length",
|
627 |
+
"words",
|
628 |
+
)
|
629 |
+
|
630 |
+
if "incorrect_substrings" in columns:
|
631 |
+
cond_filter = np.invert(conds_words["incorrect_substrings"])
|
632 |
+
Visualization_for_lang.display_dataset(
|
633 |
+
self.words,
|
634 |
+
cond_filter,
|
635 |
+
"Discarded words for the filter on incorrect substrings",
|
636 |
+
"words",
|
637 |
+
)
|
638 |
+
|
639 |
+
Visualization_for_lang.display_dataset(
|
640 |
+
self.words, all_conds_words, "Retained words", "words"
|
641 |
+
)
|
642 |
+
|
643 |
+
def download_parameters(self):
|
644 |
+
st.sidebar.subheader("Download parameters")
|
645 |
+
btn = st.sidebar.download_button(
|
646 |
+
label="Download current parameters as json",
|
647 |
+
data=json.dumps(self.parameters),
|
648 |
+
file_name=f"parameters_{self.lang_dataset_id}.json",
|
649 |
+
)
|
650 |
+
|
651 |
+
"""
|
652 |
+
def plot_zipf_law(self):
|
653 |
+
if not (self.words is None):
|
654 |
+
st.header("Zipf's Law")
|
655 |
+
|
656 |
+
display_zipf_law = st.checkbox("Display Zipf's Law")
|
657 |
+
|
658 |
+
if display_zipf_law:
|
659 |
+
|
660 |
+
freq_words = {}
|
661 |
+
for _, row in self.words.iterrows():
|
662 |
+
freq_words[row["word"]] = freq_words.get(row["word"], 0) + 1
|
663 |
+
freq_words = np.array(list(freq_words.values()))
|
664 |
+
freq_words = -np.sort(-freq_words)
|
665 |
+
|
666 |
+
fig, ax = plt.subplots()
|
667 |
+
ax.loglog(freq_words)
|
668 |
+
ax.set_title("Zipf's Law")
|
669 |
+
ax.set_xlabel("$i$-th most frequent word")
|
670 |
+
ax.set_ylabel("frequency in the documents")
|
671 |
+
st.pyplot(fig)
|
672 |
+
"""
|
673 |
+
|
674 |
+
def analyse_personal_doc(self):
|
675 |
+
with st.expander("Analyse your own document"):
|
676 |
+
st.header("Analyse your own document")
|
677 |
+
|
678 |
+
personal_doc = st.text_area(
|
679 |
+
label="Paste here the document you want to analyse",
|
680 |
+
value="",
|
681 |
+
max_chars=10000,
|
682 |
+
)
|
683 |
+
|
684 |
+
is_discarded = False
|
685 |
+
|
686 |
+
def is_doc_discarded(key, score):
|
687 |
+
if key[2]: # max cutoff
|
688 |
+
return score > key[1]
|
689 |
+
else:
|
690 |
+
return score < key[1]
|
691 |
+
|
692 |
+
if personal_doc:
|
693 |
+
|
694 |
+
st.markdown("Statistics of the document:")
|
695 |
+
|
696 |
+
for key in self.keys:
|
697 |
+
if key[0] == "number_words":
|
698 |
+
words = ModifyingDocuments.get_words_from_document(
|
699 |
+
personal_doc,
|
700 |
+
self.sentencepiece_model_tok,
|
701 |
+
lower_case=False,
|
702 |
+
strip_characters=self.param["strip_characters"],
|
703 |
+
)
|
704 |
+
if key[2]:
|
705 |
+
st.markdown(f"Number of words: {len(words)}")
|
706 |
+
if is_doc_discarded(key, len(words)):
|
707 |
+
is_discarded = True
|
708 |
+
|
709 |
+
elif key[0] == "character_repetition_ratio":
|
710 |
+
character_repetition_ratio = (
|
711 |
+
Filtering.compute_character_repetition_ratio(
|
712 |
+
personal_doc, int(key[3])
|
713 |
+
)
|
714 |
+
)
|
715 |
+
character_repetition_ratio = round(
|
716 |
+
character_repetition_ratio, 3
|
717 |
+
)
|
718 |
+
st.markdown(
|
719 |
+
f"Character repetition ratio: {character_repetition_ratio}"
|
720 |
+
)
|
721 |
+
if is_doc_discarded(key, character_repetition_ratio):
|
722 |
+
is_discarded = True
|
723 |
+
|
724 |
+
elif key[0] == "word_repetition_ratio":
|
725 |
+
word_repetition_ratio = Filtering.compute_word_repetition_ratio(
|
726 |
+
personal_doc,
|
727 |
+
self.sentencepiece_model_tok,
|
728 |
+
self.param["strip_characters"],
|
729 |
+
int(key[3]),
|
730 |
+
)
|
731 |
+
word_repetition_ratio = round(word_repetition_ratio, 3)
|
732 |
+
st.markdown(f"Word repetition ratio: {word_repetition_ratio}")
|
733 |
+
if is_doc_discarded(key, word_repetition_ratio):
|
734 |
+
is_discarded = True
|
735 |
+
|
736 |
+
elif key[0] == "special_characters_ratio":
|
737 |
+
special_characters_ratio = (
|
738 |
+
Filtering.compute_special_characters_ratio(
|
739 |
+
personal_doc, self.param["special_characters"]
|
740 |
+
)
|
741 |
+
)
|
742 |
+
special_characters_ratio = round(special_characters_ratio, 3)
|
743 |
+
st.markdown(
|
744 |
+
f"Special characters ratio: {special_characters_ratio}"
|
745 |
+
)
|
746 |
+
if is_doc_discarded(key, special_characters_ratio):
|
747 |
+
is_discarded = True
|
748 |
+
|
749 |
+
elif key[0] == "stopwords_ratio":
|
750 |
+
stopwords_ratio = Filtering.compute_stopwords_ratio(
|
751 |
+
personal_doc,
|
752 |
+
self.sentencepiece_model_tok,
|
753 |
+
self.param["strip_characters"],
|
754 |
+
self.param["cond_words_augmentation"],
|
755 |
+
self.param["words_augmentation_group_sizes"],
|
756 |
+
self.param["words_augmentation_join_char"],
|
757 |
+
self.stopwords,
|
758 |
+
)
|
759 |
+
stopwords_ratio = round(stopwords_ratio, 3)
|
760 |
+
st.markdown(f"Stop words ratio: {stopwords_ratio}")
|
761 |
+
if is_doc_discarded(key, stopwords_ratio):
|
762 |
+
is_discarded = True
|
763 |
+
|
764 |
+
elif key[0] == "flagged_words_ratio":
|
765 |
+
flagged_words_ratio = Filtering.compute_flagged_words_ratio(
|
766 |
+
personal_doc,
|
767 |
+
self.sentencepiece_model_tok,
|
768 |
+
self.param["strip_characters"],
|
769 |
+
self.param["cond_words_augmentation"],
|
770 |
+
self.param["words_augmentation_group_sizes"],
|
771 |
+
self.param["words_augmentation_join_char"],
|
772 |
+
self.flagged_words,
|
773 |
+
)
|
774 |
+
flagged_words_ratio = round(flagged_words_ratio, 3)
|
775 |
+
st.markdown(f"Flagged words ratio: {flagged_words_ratio}")
|
776 |
+
if is_doc_discarded(key, flagged_words_ratio):
|
777 |
+
is_discarded = True
|
778 |
+
|
779 |
+
elif key[0] == "lang_id_score":
|
780 |
+
(
|
781 |
+
lang_pred_dataset_id,
|
782 |
+
lang_id_score,
|
783 |
+
) = Filtering.compute_lang_id_pred_score(
|
784 |
+
personal_doc, self.model_lang_id
|
785 |
+
)
|
786 |
+
lang_id_score = round(lang_id_score, 3)
|
787 |
+
st.markdown(
|
788 |
+
f"Language identification confidence score: {lang_id_score}"
|
789 |
+
)
|
790 |
+
if is_doc_discarded(key, flagged_words_ratio) or (
|
791 |
+
self.lang_dataset_id != lang_pred_dataset_id
|
792 |
+
):
|
793 |
+
is_discarded = True
|
794 |
+
|
795 |
+
elif key[0] == "perplexity_score":
|
796 |
+
perplexity_score = Filtering.compute_perplexity_score(
|
797 |
+
personal_doc,
|
798 |
+
self.sentencepiece_model,
|
799 |
+
self.kenlm_model,
|
800 |
+
)
|
801 |
+
perplexity_score = round(perplexity_score, 3)
|
802 |
+
st.markdown(f"Perplexity score: {perplexity_score}")
|
803 |
+
if is_doc_discarded(key, perplexity_score):
|
804 |
+
is_discarded = True
|
805 |
+
|
806 |
+
is_discarded = "" if is_discarded else "not "
|
807 |
+
st.markdown(
|
808 |
+
f"With the current filtering parameters, this document **is {is_discarded}discarded**."
|
809 |
+
)
|
810 |
+
|
811 |
+
def visualization_for_lang(self):
|
812 |
+
self.set_title()
|
813 |
+
self.open_data()
|
814 |
+
self.filtering_of_docs()
|
815 |
+
self.filtering_of_words()
|
816 |
+
self.download_parameters()
|
817 |
+
self.analyse_personal_doc()
|
818 |
+
|
819 |
+
|
820 |
+
class Visualization:
|
821 |
+
def __init__(self, path_instructions, param_visu_langs):
|
822 |
+
self.path_instructions = path_instructions
|
823 |
+
self.param_visu_langs = param_visu_langs
|
824 |
+
|
825 |
+
def preamble(self):
|
826 |
+
def get_binary_file_downloader_html(bin_file, file_label="File"):
|
827 |
+
with open(bin_file, "rb") as f:
|
828 |
+
data = f.read()
|
829 |
+
bin_str = base64.b64encode(data).decode()
|
830 |
+
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">{file_label}</a>'
|
831 |
+
return href
|
832 |
+
|
833 |
+
st.markdown(
|
834 |
+
"Before diving into this demo, you might want to take a look at how the filtering pipeline looks like in more detail in this "
|
835 |
+
+ get_binary_file_downloader_html(
|
836 |
+
self.path_instructions,
|
837 |
+
"pdf",
|
838 |
+
)
|
839 |
+
+ ".",
|
840 |
+
unsafe_allow_html=True,
|
841 |
+
)
|
842 |
+
|
843 |
+
def warning_preamble(self):
|
844 |
+
st.markdown(
|
845 |
+
"This demo can be a little slow, and only allows you to process up to 5000 documents "
|
846 |
+
"for a decent speed. If you want to display up to three times more documents and have "
|
847 |
+
"a faster visualization, we invite you to run this "
|
848 |
+
"[code](https://github.com/bigscience-workshop/data_tooling/tree/master/ac_dc/visualization) "
|
849 |
+
"on your computer."
|
850 |
+
)
|
851 |
+
|
852 |
+
def choose_lang(self):
|
853 |
+
options = [
|
854 |
+
self.param_visu_langs[lang_dataset_id]["lang"]
|
855 |
+
for lang_dataset_id in self.param_visu_langs
|
856 |
+
]
|
857 |
+
index = options.index("English") if ("English" in options) else 0
|
858 |
+
lang_chosen = st.selectbox(
|
859 |
+
label="Select the language for visualization",
|
860 |
+
options=options,
|
861 |
+
index=index,
|
862 |
+
)
|
863 |
+
if lang_chosen != "None":
|
864 |
+
lang_chosen_dataset_id = langs_id.loc[
|
865 |
+
langs_id["lang"] == lang_chosen, "dataset_id"
|
866 |
+
].iloc[0]
|
867 |
+
visualization_for_lang = Visualization_for_lang(
|
868 |
+
path_data=self.param_visu_langs[lang_chosen_dataset_id]["path_data"],
|
869 |
+
lang=self.param_visu_langs[lang_chosen_dataset_id]["lang"],
|
870 |
+
num_docs=self.param_visu_langs[lang_chosen_dataset_id]["num_docs"],
|
871 |
+
num_docs_for_words=self.param_visu_langs[lang_chosen_dataset_id][
|
872 |
+
"num_docs_for_words"
|
873 |
+
],
|
874 |
+
max_len_text_display=self.param_visu_langs[lang_chosen_dataset_id][
|
875 |
+
"max_len_text_display"
|
876 |
+
],
|
877 |
+
lang_dataset_id=self.param_visu_langs[lang_chosen_dataset_id][
|
878 |
+
"lang_dataset_id"
|
879 |
+
],
|
880 |
+
path_fasttext_model=self.param_visu_langs[lang_chosen_dataset_id][
|
881 |
+
"path_fasttext_model"
|
882 |
+
],
|
883 |
+
path_sentencepiece_model=self.param_visu_langs[lang_chosen_dataset_id][
|
884 |
+
"path_sentencepiece_model"
|
885 |
+
],
|
886 |
+
path_kenlm_model=self.param_visu_langs[lang_chosen_dataset_id][
|
887 |
+
"path_kenlm_model"
|
888 |
+
],
|
889 |
+
)
|
890 |
+
visualization_for_lang.visualization_for_lang()
|
891 |
+
|
892 |
+
def visualization(self):
|
893 |
+
self.preamble()
|
894 |
+
self.warning_preamble()
|
895 |
+
self.choose_lang()
|
896 |
+
|
897 |
+
|
898 |
+
path_instructions = "./explanation_filtering_pipeline.pdf"
|
899 |
+
|
900 |
+
param_visu_langs = {
|
901 |
+
lang_dataset_id: {
|
902 |
+
"path_data": f"./{lang_dataset_id}_examples_with_stats.json",
|
903 |
+
"lang": langs_id.loc[langs_id["dataset_id"] == lang_dataset_id, "lang"].iloc[0],
|
904 |
+
"num_docs": 5000,
|
905 |
+
"num_docs_for_words": 500,
|
906 |
+
"max_len_text_display": 10000,
|
907 |
+
"lang_dataset_id": lang_dataset_id,
|
908 |
+
"path_fasttext_model": "./lid.176.bin",
|
909 |
+
"path_sentencepiece_model": f"./{lang_dataset_id}.sp.model",
|
910 |
+
"path_kenlm_model": f"./{lang_dataset_id}.arpa.bin",
|
911 |
+
}
|
912 |
+
for lang_dataset_id in ["en", "pt"]
|
913 |
+
}
|
914 |
+
|
915 |
+
visualization = Visualization(path_instructions, param_visu_langs)
|
916 |
+
visualization.visualization()
|
en.arpa.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04923fccbb4e63005c40f01d66112659416de01accd80d16e366a592289ee07a
|
3 |
+
size 4444690658
|
en.sp.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cf8147a573770b4e6c0d4df1dcb75453baa88190706dab406be7711b84f059de
|
3 |
+
size 931348
|
en_examples_with_stats.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dccf03710e9dc7ec68c676175e711be815bc29a50260f5d334156b03fe2e6d1
|
3 |
+
size 241408394
|
explanation_filtering_pipeline.pdf
ADDED
Binary file (218 kB). View file
|
|
filtering.py
ADDED
@@ -0,0 +1,957 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
import fasttext
|
6 |
+
|
7 |
+
import sentencepiece
|
8 |
+
import kenlm
|
9 |
+
|
10 |
+
import pathlib
|
11 |
+
|
12 |
+
from languages_id import langs_id
|
13 |
+
from parameters_filtering import parameters_filtering
|
14 |
+
from normalization import normalization
|
15 |
+
from stopwords import stopwords
|
16 |
+
from flagged_words import flagged_words
|
17 |
+
|
18 |
+
|
19 |
+
class LoadParameters:
|
20 |
+
@staticmethod
|
21 |
+
def load_parameters(lang_dataset_id):
|
22 |
+
if lang_dataset_id in parameters_filtering:
|
23 |
+
param = parameters_filtering[lang_dataset_id]
|
24 |
+
else:
|
25 |
+
param = parameters_filtering["default"]
|
26 |
+
return param
|
27 |
+
|
28 |
+
@staticmethod
|
29 |
+
def load_stopwords(lang_dataset_id):
|
30 |
+
stopwords_lang_id = langs_id.loc[
|
31 |
+
langs_id["dataset_id"] == lang_dataset_id, "stopwords_id"
|
32 |
+
].iloc[0]
|
33 |
+
if stopwords_lang_id:
|
34 |
+
stopwords_lang = set(stopwords[stopwords_lang_id])
|
35 |
+
else:
|
36 |
+
stopwords_lang = None
|
37 |
+
return stopwords_lang
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def load_flagged_words(lang_dataset_id):
|
41 |
+
flagged_words_lang_id = langs_id.loc[
|
42 |
+
langs_id["dataset_id"] == lang_dataset_id, "flagged_words_id"
|
43 |
+
].iloc[0]
|
44 |
+
if flagged_words_lang_id:
|
45 |
+
flagged_words_lang = set(flagged_words[flagged_words_lang_id])
|
46 |
+
else:
|
47 |
+
flagged_words_lang = None
|
48 |
+
return flagged_words_lang
|
49 |
+
|
50 |
+
@staticmethod
|
51 |
+
def load_model_lang_id(lang_dataset_id, path_fasttext_model):
|
52 |
+
fasttext_lang_id = langs_id.loc[
|
53 |
+
langs_id["dataset_id"] == lang_dataset_id, "fasttext_id"
|
54 |
+
].iloc[0]
|
55 |
+
if fasttext_lang_id:
|
56 |
+
model_lang_id = fasttext.load_model(path_fasttext_model)
|
57 |
+
else:
|
58 |
+
model_lang_id = None
|
59 |
+
return model_lang_id
|
60 |
+
|
61 |
+
@staticmethod
|
62 |
+
def load_sentencepiece_model(lang_dataset_id, path_sentencepiece_model):
|
63 |
+
sentencepiece_lang_id = langs_id.loc[
|
64 |
+
langs_id["dataset_id"] == lang_dataset_id, "sentencepiece_id"
|
65 |
+
].iloc[0]
|
66 |
+
if sentencepiece_lang_id:
|
67 |
+
sentencepiece_model = sentencepiece.SentencePieceProcessor()
|
68 |
+
sentencepiece_model.load(path_sentencepiece_model)
|
69 |
+
else:
|
70 |
+
sentencepiece_model = None
|
71 |
+
return sentencepiece_model
|
72 |
+
|
73 |
+
@staticmethod
|
74 |
+
def load_kenlm_model(lang_dataset_id, path_kenlm_model):
|
75 |
+
kenlm_lang_id = langs_id.loc[
|
76 |
+
langs_id["dataset_id"] == lang_dataset_id, "kenlm_id"
|
77 |
+
].iloc[0]
|
78 |
+
if kenlm_lang_id:
|
79 |
+
kenlm_model = kenlm.Model(path_kenlm_model)
|
80 |
+
else:
|
81 |
+
kenlm_model = None
|
82 |
+
return kenlm_model
|
83 |
+
|
84 |
+
|
85 |
+
class ModifyingDocuments:
|
86 |
+
@staticmethod
|
87 |
+
def remove_empty_el_from_list(list_):
|
88 |
+
return [el for el in list_ if el]
|
89 |
+
|
90 |
+
@staticmethod
|
91 |
+
def remove_non_printing_characters(document, non_printing_characters_re):
|
92 |
+
return non_printing_characters_re.sub("", document)
|
93 |
+
|
94 |
+
@staticmethod
|
95 |
+
def uniform_whitespace(
|
96 |
+
document,
|
97 |
+
whitespace=[
|
98 |
+
" ",
|
99 |
+
" ",
|
100 |
+
" ",
|
101 |
+
" ",
|
102 |
+
" ",
|
103 |
+
" ",
|
104 |
+
" ",
|
105 |
+
" ",
|
106 |
+
" ",
|
107 |
+
" ",
|
108 |
+
"",
|
109 |
+
"",
|
110 |
+
],
|
111 |
+
):
|
112 |
+
"""There are different whitespace characters."""
|
113 |
+
whitespace = set(whitespace)
|
114 |
+
document = "".join(
|
115 |
+
[char if char not in whitespace else " " for char in document]
|
116 |
+
)
|
117 |
+
return document
|
118 |
+
|
119 |
+
@staticmethod
|
120 |
+
def replace_digits_with_zeros(document, digits_re):
|
121 |
+
return digits_re.sub("0", document)
|
122 |
+
|
123 |
+
@staticmethod
|
124 |
+
def replace_unicode_punctuation(document, unicode_punctuation):
|
125 |
+
return "".join(unicode_punctuation.get(c, c) for c in document)
|
126 |
+
|
127 |
+
@staticmethod
|
128 |
+
def normalization(
|
129 |
+
document,
|
130 |
+
remove_non_printing_characters,
|
131 |
+
strip,
|
132 |
+
lower_case,
|
133 |
+
uniform_whitespace,
|
134 |
+
replace_digits_with_zeros,
|
135 |
+
replace_unicode_punctuation,
|
136 |
+
non_printing_characters_re=normalization["non_printing_characters_re"],
|
137 |
+
digits_re=normalization["digits_re"],
|
138 |
+
unicode_punctuation=normalization["unicode_punctuation"],
|
139 |
+
):
|
140 |
+
if remove_non_printing_characters:
|
141 |
+
document = ModifyingDocuments.remove_non_printing_characters(
|
142 |
+
document, non_printing_characters_re
|
143 |
+
)
|
144 |
+
if strip:
|
145 |
+
document = document.strip()
|
146 |
+
if not document:
|
147 |
+
return document
|
148 |
+
if lower_case:
|
149 |
+
document = document.lower()
|
150 |
+
if uniform_whitespace:
|
151 |
+
document = ModifyingDocuments.uniform_whitespace(document)
|
152 |
+
if replace_digits_with_zeros:
|
153 |
+
document = ModifyingDocuments.replace_digits_with_zeros(document, digits_re)
|
154 |
+
if replace_unicode_punctuation:
|
155 |
+
document = ModifyingDocuments.replace_unicode_punctuation(
|
156 |
+
document, unicode_punctuation
|
157 |
+
)
|
158 |
+
return document
|
159 |
+
|
160 |
+
@staticmethod
|
161 |
+
def tokenization(document, sentencepiece_model, join_on_whitespace):
|
162 |
+
document_tokenized = sentencepiece_model.encode_as_pieces(document)
|
163 |
+
if join_on_whitespace:
|
164 |
+
document_tokenized = " ".join(document_tokenized)
|
165 |
+
return document_tokenized
|
166 |
+
|
167 |
+
@staticmethod
|
168 |
+
def split_on_whitespace(
|
169 |
+
document,
|
170 |
+
new_line=False,
|
171 |
+
tab=False,
|
172 |
+
):
|
173 |
+
"""This method also removes concatenated spaces."""
|
174 |
+
sep = [" "] + new_line * ["\n"] + tab * ["\t"]
|
175 |
+
sep = "|".join(sep)
|
176 |
+
split_document = re.split(sep, document)
|
177 |
+
split_document = ModifyingDocuments.remove_empty_el_from_list(split_document)
|
178 |
+
return split_document
|
179 |
+
|
180 |
+
@staticmethod
|
181 |
+
def strip(document, strip_characters):
|
182 |
+
"""Way faster than document.strip(strip_characters)
|
183 |
+
since strip_characters is now a set instead of a str,
|
184 |
+
and it contains a lot of elements (all the emojis)."""
|
185 |
+
if not document:
|
186 |
+
return document
|
187 |
+
beg_ind = 0
|
188 |
+
end_ind = len(document)
|
189 |
+
for i in range(len(document)):
|
190 |
+
if document[i] in strip_characters:
|
191 |
+
beg_ind += 1
|
192 |
+
else:
|
193 |
+
break
|
194 |
+
for i in range(1, len(document) + 1):
|
195 |
+
if document[-i] in strip_characters:
|
196 |
+
end_ind -= 1
|
197 |
+
else:
|
198 |
+
break
|
199 |
+
document_stripped = document[beg_ind:end_ind]
|
200 |
+
return document_stripped
|
201 |
+
|
202 |
+
@staticmethod
|
203 |
+
def get_words_from_document(
|
204 |
+
document, sentencepiece_model_tok, lower_case, strip_characters
|
205 |
+
):
|
206 |
+
"""Get words from a document. Non reversible since the document
|
207 |
+
is split on multiple characters, words are stripped of
|
208 |
+
special characters and characters are converted to lower case.
|
209 |
+
Useful to compute ratios, like the stopwords ratio."""
|
210 |
+
if sentencepiece_model_tok:
|
211 |
+
document_normalized = ModifyingDocuments.normalization(
|
212 |
+
document=document,
|
213 |
+
remove_non_printing_characters=True,
|
214 |
+
strip=True,
|
215 |
+
lower_case=True,
|
216 |
+
uniform_whitespace=True,
|
217 |
+
replace_digits_with_zeros=True,
|
218 |
+
replace_unicode_punctuation=True,
|
219 |
+
)
|
220 |
+
words = ModifyingDocuments.tokenization(
|
221 |
+
document_normalized, sentencepiece_model_tok, join_on_whitespace=False
|
222 |
+
)
|
223 |
+
else:
|
224 |
+
words = ModifyingDocuments.split_on_whitespace(
|
225 |
+
document, new_line=True, tab=True
|
226 |
+
)
|
227 |
+
if lower_case:
|
228 |
+
words = [word.lower() for word in words]
|
229 |
+
if strip_characters:
|
230 |
+
words = [ModifyingDocuments.strip(word, strip_characters) for word in words]
|
231 |
+
words = ModifyingDocuments.remove_empty_el_from_list(words)
|
232 |
+
return words
|
233 |
+
|
234 |
+
@staticmethod
|
235 |
+
def words_augmentation(words, group_size, join_char):
|
236 |
+
"""Augment words, especially for Chinese (without a space between words)
|
237 |
+
and Vietnamese (with a space between syllables)."""
|
238 |
+
augmentation = [
|
239 |
+
join_char.join(words[i : i + group_size])
|
240 |
+
for i in range(len(words) - group_size + 1)
|
241 |
+
]
|
242 |
+
return augmentation
|
243 |
+
|
244 |
+
@staticmethod
|
245 |
+
def split_on_newline_tab_whitespace(document):
|
246 |
+
"""First split on "\n", then on "\t", then on " "."""
|
247 |
+
sentences = document.split("\n")
|
248 |
+
sentences = [sentence.split("\t") for sentence in sentences]
|
249 |
+
sentences = [
|
250 |
+
[
|
251 |
+
ModifyingDocuments.split_on_whitespace(subsentence)
|
252 |
+
for subsentence in sentence
|
253 |
+
]
|
254 |
+
for sentence in sentences
|
255 |
+
]
|
256 |
+
return sentences
|
257 |
+
|
258 |
+
@staticmethod
|
259 |
+
def merge_on_whitespace_tab_newline(sentences):
|
260 |
+
"""Invert the method split_on_newline_tab_whitespace.
|
261 |
+
Removes concatenated separators."""
|
262 |
+
sentences = [
|
263 |
+
[" ".join(subsentence) for subsentence in sentence if subsentence]
|
264 |
+
for sentence in sentences
|
265 |
+
]
|
266 |
+
sentences = ["\t".join(sentence) for sentence in sentences if sentence]
|
267 |
+
if not sentences:
|
268 |
+
return ""
|
269 |
+
document = "\n".join(sentences)
|
270 |
+
return document
|
271 |
+
|
272 |
+
@staticmethod
|
273 |
+
def should_keep_word_with_incorrect_substrings(
|
274 |
+
word, strip_characters, incorrect_word_substrings
|
275 |
+
):
|
276 |
+
word = ModifyingDocuments.strip(word, strip_characters)
|
277 |
+
should_keep = all(
|
278 |
+
[(i_substr not in word) for i_substr in incorrect_word_substrings]
|
279 |
+
)
|
280 |
+
return should_keep
|
281 |
+
|
282 |
+
@staticmethod
|
283 |
+
def remove_words_with_incorrect_substrings(
|
284 |
+
document,
|
285 |
+
strip_characters,
|
286 |
+
incorrect_word_substrings,
|
287 |
+
):
|
288 |
+
sentences = ModifyingDocuments.split_on_newline_tab_whitespace(document)
|
289 |
+
sentences = [
|
290 |
+
[
|
291 |
+
[
|
292 |
+
word
|
293 |
+
for word in subsentence
|
294 |
+
if ModifyingDocuments.should_keep_word_with_incorrect_substrings(
|
295 |
+
word, strip_characters, incorrect_word_substrings
|
296 |
+
)
|
297 |
+
]
|
298 |
+
for subsentence in sentence
|
299 |
+
]
|
300 |
+
for sentence in sentences
|
301 |
+
]
|
302 |
+
document = ModifyingDocuments.merge_on_whitespace_tab_newline(sentences)
|
303 |
+
return document
|
304 |
+
|
305 |
+
@staticmethod
|
306 |
+
def should_keep_long_word(word, strip_characters, length_word_max_cutoff):
|
307 |
+
"""If the word is too long but it contains only one
|
308 |
+
special character, it might be a concatenation of one word,
|
309 |
+
a punctuation, and another word, with no space between them.
|
310 |
+
In this case, we give the word a pass."""
|
311 |
+
if len(word) <= length_word_max_cutoff:
|
312 |
+
return True
|
313 |
+
word = ModifyingDocuments.strip(word, strip_characters)
|
314 |
+
if not word: # The word consisted only of strip characters
|
315 |
+
return False
|
316 |
+
if len(word) <= length_word_max_cutoff:
|
317 |
+
return True
|
318 |
+
return False
|
319 |
+
|
320 |
+
def remove_long_words(
|
321 |
+
document,
|
322 |
+
strip_characters,
|
323 |
+
length_word_max_cutoff,
|
324 |
+
):
|
325 |
+
sentences = ModifyingDocuments.split_on_newline_tab_whitespace(document)
|
326 |
+
sentences = [
|
327 |
+
[
|
328 |
+
[
|
329 |
+
word
|
330 |
+
for word in subsentence
|
331 |
+
if ModifyingDocuments.should_keep_long_word(
|
332 |
+
word,
|
333 |
+
strip_characters,
|
334 |
+
length_word_max_cutoff,
|
335 |
+
)
|
336 |
+
]
|
337 |
+
for subsentence in sentence
|
338 |
+
]
|
339 |
+
for sentence in sentences
|
340 |
+
]
|
341 |
+
document = ModifyingDocuments.merge_on_whitespace_tab_newline(sentences)
|
342 |
+
return document
|
343 |
+
|
344 |
+
@staticmethod
|
345 |
+
def modifying_documents(
|
346 |
+
document,
|
347 |
+
cond_uniform_whitespace,
|
348 |
+
cond_replace_unicode_punctuation,
|
349 |
+
cond_remove_words_with_incorrect_substrings,
|
350 |
+
strip_characters,
|
351 |
+
incorrect_word_substrings,
|
352 |
+
cond_remove_long_words,
|
353 |
+
length_word_max_cutoff,
|
354 |
+
):
|
355 |
+
document = ModifyingDocuments.normalization(
|
356 |
+
document=document,
|
357 |
+
remove_non_printing_characters=False,
|
358 |
+
strip=True,
|
359 |
+
lower_case=False,
|
360 |
+
uniform_whitespace=cond_uniform_whitespace,
|
361 |
+
replace_digits_with_zeros=False,
|
362 |
+
replace_unicode_punctuation=cond_replace_unicode_punctuation,
|
363 |
+
)
|
364 |
+
if cond_remove_words_with_incorrect_substrings:
|
365 |
+
document = ModifyingDocuments.remove_words_with_incorrect_substrings(
|
366 |
+
document,
|
367 |
+
strip_characters,
|
368 |
+
incorrect_word_substrings,
|
369 |
+
)
|
370 |
+
if cond_remove_long_words:
|
371 |
+
document = ModifyingDocuments.remove_long_words(
|
372 |
+
document,
|
373 |
+
strip_characters,
|
374 |
+
length_word_max_cutoff,
|
375 |
+
)
|
376 |
+
return document
|
377 |
+
|
378 |
+
|
379 |
+
class FunctionDatasetModifyingDocuments:
|
380 |
+
def __init__(self, lang_dataset_id):
|
381 |
+
self.lang_dataset_id = lang_dataset_id
|
382 |
+
self.param = LoadParameters.load_parameters(lang_dataset_id)
|
383 |
+
|
384 |
+
def __call__(self, example):
|
385 |
+
example["text"] = ModifyingDocuments.modifying_documents(
|
386 |
+
document=example["text"],
|
387 |
+
cond_uniform_whitespace=self.param["cond_uniform_whitespace"],
|
388 |
+
cond_replace_unicode_punctuation=self.param[
|
389 |
+
"cond_replace_unicode_punctuation"
|
390 |
+
],
|
391 |
+
cond_remove_words_with_incorrect_substrings=self.param[
|
392 |
+
"cond_remove_words_with_incorrect_substrings"
|
393 |
+
],
|
394 |
+
strip_characters=self.param["strip_characters"],
|
395 |
+
incorrect_word_substrings=self.param["incorrect_word_substrings"],
|
396 |
+
cond_remove_long_words=self.param["cond_remove_long_words"],
|
397 |
+
length_word_max_cutoff=self.param["length_word_max_cutoff"],
|
398 |
+
)
|
399 |
+
return example
|
400 |
+
|
401 |
+
def __reduce__(self):
|
402 |
+
return (self.__class__, (self.lang_dataset_id,))
|
403 |
+
|
404 |
+
|
405 |
+
class Filtering:
|
406 |
+
@staticmethod
|
407 |
+
def check_number_words(
|
408 |
+
document,
|
409 |
+
sentencepiece_model_tok,
|
410 |
+
strip_characters,
|
411 |
+
number_words_min_cutoff,
|
412 |
+
number_words_max_cutoff,
|
413 |
+
):
|
414 |
+
words = ModifyingDocuments.get_words_from_document(
|
415 |
+
document,
|
416 |
+
sentencepiece_model_tok,
|
417 |
+
lower_case=False,
|
418 |
+
strip_characters=strip_characters,
|
419 |
+
)
|
420 |
+
cond = (len(words) >= number_words_min_cutoff) and (
|
421 |
+
len(words) <= number_words_max_cutoff
|
422 |
+
)
|
423 |
+
return cond
|
424 |
+
|
425 |
+
@staticmethod
|
426 |
+
def compute_character_repetition_ratio(document, character_repetition_length):
|
427 |
+
def get_freq_character_ngrams(document, n):
|
428 |
+
character_ngrams = [
|
429 |
+
document[i : i + n] for i in range(len(document) - n + 1)
|
430 |
+
]
|
431 |
+
freq_character_ngrams = {}
|
432 |
+
for character_ngram in character_ngrams:
|
433 |
+
freq_character_ngrams[character_ngram] = (
|
434 |
+
freq_character_ngrams.get(character_ngram, 0) + 1
|
435 |
+
)
|
436 |
+
return freq_character_ngrams
|
437 |
+
|
438 |
+
freq_character_ngrams = get_freq_character_ngrams(
|
439 |
+
document, character_repetition_length
|
440 |
+
)
|
441 |
+
if len(freq_character_ngrams) == 0:
|
442 |
+
return 0
|
443 |
+
freq_character_ngrams = list(freq_character_ngrams.values())
|
444 |
+
freq_character_ngrams = sorted(freq_character_ngrams, reverse=True)
|
445 |
+
val_less_than_one = len([el for el in freq_character_ngrams if el > 1])
|
446 |
+
num_rep_character_ngrams = min(
|
447 |
+
int(np.sqrt(len(freq_character_ngrams))),
|
448 |
+
len(freq_character_ngrams) - val_less_than_one,
|
449 |
+
)
|
450 |
+
character_repetition_ratio = sum(
|
451 |
+
freq_character_ngrams[:num_rep_character_ngrams]
|
452 |
+
) / sum(freq_character_ngrams)
|
453 |
+
return character_repetition_ratio
|
454 |
+
|
455 |
+
@staticmethod
|
456 |
+
def check_character_repetition_removal(
|
457 |
+
document,
|
458 |
+
character_repetition_length,
|
459 |
+
character_repetition_max_cutoff,
|
460 |
+
):
|
461 |
+
character_repetition_ratio = Filtering.compute_character_repetition_ratio(
|
462 |
+
document, character_repetition_length
|
463 |
+
)
|
464 |
+
cond = character_repetition_ratio <= character_repetition_max_cutoff
|
465 |
+
return cond
|
466 |
+
|
467 |
+
@staticmethod
|
468 |
+
def compute_word_repetition_ratio(
|
469 |
+
document, sentencepiece_model_tok, strip_characters, word_repetition_length
|
470 |
+
):
|
471 |
+
def get_freq_word_ngrams(
|
472 |
+
document, sentencepiece_model_tok, strip_characters, n
|
473 |
+
):
|
474 |
+
words = ModifyingDocuments.get_words_from_document(
|
475 |
+
document,
|
476 |
+
sentencepiece_model_tok,
|
477 |
+
lower_case=True,
|
478 |
+
strip_characters=strip_characters,
|
479 |
+
)
|
480 |
+
word_ngrams = [
|
481 |
+
" ".join(words[i : i + n]) for i in range(len(words) - n + 1)
|
482 |
+
]
|
483 |
+
freq_word_ngrams = {}
|
484 |
+
for word_ngram in word_ngrams:
|
485 |
+
freq_word_ngrams[word_ngram] = freq_word_ngrams.get(word_ngram, 0) + 1
|
486 |
+
return freq_word_ngrams
|
487 |
+
|
488 |
+
freq_word_ngrams = get_freq_word_ngrams(
|
489 |
+
document, sentencepiece_model_tok, strip_characters, word_repetition_length
|
490 |
+
)
|
491 |
+
if len(freq_word_ngrams) == 0:
|
492 |
+
return 0
|
493 |
+
freq_word_ngrams = list(freq_word_ngrams.values())
|
494 |
+
word_repetition_ratio = sum(
|
495 |
+
freq for freq in freq_word_ngrams if freq > 1
|
496 |
+
) / sum(freq_word_ngrams)
|
497 |
+
return word_repetition_ratio
|
498 |
+
|
499 |
+
@staticmethod
|
500 |
+
def check_word_repetition_removal(
|
501 |
+
document,
|
502 |
+
sentencepiece_model_tok,
|
503 |
+
strip_characters,
|
504 |
+
word_repetition_length,
|
505 |
+
word_repetition_max_cutoff,
|
506 |
+
):
|
507 |
+
word_repetition_ratio = Filtering.compute_word_repetition_ratio(
|
508 |
+
document, sentencepiece_model_tok, strip_characters, word_repetition_length
|
509 |
+
)
|
510 |
+
cond = word_repetition_ratio <= word_repetition_max_cutoff
|
511 |
+
return cond
|
512 |
+
|
513 |
+
@staticmethod
|
514 |
+
def compute_special_characters_ratio(document, special_characters):
|
515 |
+
if len(document) == 0:
|
516 |
+
return 0
|
517 |
+
special_characters_ratio = len(
|
518 |
+
[char for char in document if char in special_characters]
|
519 |
+
) / len(document)
|
520 |
+
return special_characters_ratio
|
521 |
+
|
522 |
+
@staticmethod
|
523 |
+
def check_special_characters(
|
524 |
+
document,
|
525 |
+
special_characters,
|
526 |
+
special_characters_max_cutoff,
|
527 |
+
):
|
528 |
+
special_characters_ratio = Filtering.compute_special_characters_ratio(
|
529 |
+
document, special_characters
|
530 |
+
)
|
531 |
+
cond = special_characters_ratio <= special_characters_max_cutoff
|
532 |
+
return cond
|
533 |
+
|
534 |
+
@staticmethod
|
535 |
+
def compute_stopwords_ratio(
|
536 |
+
document,
|
537 |
+
sentencepiece_model_tok,
|
538 |
+
strip_characters,
|
539 |
+
cond_words_augmentation,
|
540 |
+
words_augmentation_group_sizes,
|
541 |
+
words_augmentation_join_char,
|
542 |
+
stopwords,
|
543 |
+
):
|
544 |
+
words = ModifyingDocuments.get_words_from_document(
|
545 |
+
document,
|
546 |
+
sentencepiece_model_tok,
|
547 |
+
lower_case=True,
|
548 |
+
strip_characters=strip_characters,
|
549 |
+
)
|
550 |
+
if not words:
|
551 |
+
return 0
|
552 |
+
augmentation = []
|
553 |
+
if cond_words_augmentation:
|
554 |
+
augmentation = [
|
555 |
+
ModifyingDocuments.words_augmentation(
|
556 |
+
words, group_size, words_augmentation_join_char
|
557 |
+
)
|
558 |
+
for group_size in words_augmentation_group_sizes
|
559 |
+
]
|
560 |
+
augmentation = [word for augm in augmentation for word in augm]
|
561 |
+
stopwords_ratio = len(
|
562 |
+
[word for word in words + augmentation if word in stopwords]
|
563 |
+
) / len(words)
|
564 |
+
if stopwords_ratio > 1.0:
|
565 |
+
stopwords_ratio = 1.0
|
566 |
+
return stopwords_ratio
|
567 |
+
|
568 |
+
@staticmethod
|
569 |
+
def check_stopwords(
|
570 |
+
document,
|
571 |
+
sentencepiece_model_tok,
|
572 |
+
strip_characters,
|
573 |
+
cond_words_augmentation,
|
574 |
+
words_augmentation_group_sizes,
|
575 |
+
words_augmentation_join_char,
|
576 |
+
stopwords,
|
577 |
+
stopwords_min_cutoff,
|
578 |
+
):
|
579 |
+
cond = True
|
580 |
+
if stopwords:
|
581 |
+
stopwords_ratio = Filtering.compute_stopwords_ratio(
|
582 |
+
document,
|
583 |
+
sentencepiece_model_tok,
|
584 |
+
strip_characters,
|
585 |
+
cond_words_augmentation,
|
586 |
+
words_augmentation_group_sizes,
|
587 |
+
words_augmentation_join_char,
|
588 |
+
stopwords,
|
589 |
+
)
|
590 |
+
cond = stopwords_ratio >= stopwords_min_cutoff
|
591 |
+
return cond
|
592 |
+
|
593 |
+
@staticmethod
|
594 |
+
def compute_flagged_words_ratio(
|
595 |
+
document,
|
596 |
+
sentencepiece_model_tok,
|
597 |
+
strip_characters,
|
598 |
+
cond_words_augmentation,
|
599 |
+
words_augmentation_group_sizes,
|
600 |
+
words_augmentation_join_char,
|
601 |
+
flagged_words,
|
602 |
+
):
|
603 |
+
words = ModifyingDocuments.get_words_from_document(
|
604 |
+
document,
|
605 |
+
sentencepiece_model_tok,
|
606 |
+
lower_case=True,
|
607 |
+
strip_characters=strip_characters,
|
608 |
+
)
|
609 |
+
if not words:
|
610 |
+
return 0
|
611 |
+
augmentation = []
|
612 |
+
if cond_words_augmentation:
|
613 |
+
augmentation = [
|
614 |
+
ModifyingDocuments.words_augmentation(
|
615 |
+
words, group_size, words_augmentation_join_char
|
616 |
+
)
|
617 |
+
for group_size in words_augmentation_group_sizes
|
618 |
+
]
|
619 |
+
augmentation = [word for augm in augmentation for word in augm]
|
620 |
+
flagged_words_ratio = len(
|
621 |
+
[word for word in words + augmentation if word in flagged_words]
|
622 |
+
) / len(words)
|
623 |
+
if flagged_words_ratio > 1.0:
|
624 |
+
flagged_words_ratio = 1.0
|
625 |
+
return flagged_words_ratio
|
626 |
+
|
627 |
+
@staticmethod
|
628 |
+
def check_flagged_words(
|
629 |
+
document,
|
630 |
+
sentencepiece_model_tok,
|
631 |
+
strip_characters,
|
632 |
+
cond_words_augmentation,
|
633 |
+
words_augmentation_group_sizes,
|
634 |
+
words_augmentation_join_char,
|
635 |
+
flagged_words,
|
636 |
+
flagged_words_max_cutoff,
|
637 |
+
):
|
638 |
+
cond = True
|
639 |
+
if flagged_words:
|
640 |
+
flagged_words_ratio = Filtering.compute_flagged_words_ratio(
|
641 |
+
document,
|
642 |
+
sentencepiece_model_tok,
|
643 |
+
strip_characters,
|
644 |
+
cond_words_augmentation,
|
645 |
+
words_augmentation_group_sizes,
|
646 |
+
words_augmentation_join_char,
|
647 |
+
flagged_words,
|
648 |
+
)
|
649 |
+
cond = flagged_words_ratio <= flagged_words_max_cutoff
|
650 |
+
return cond
|
651 |
+
|
652 |
+
@staticmethod
|
653 |
+
def compute_lang_id_pred_score(document, model_lang_id):
|
654 |
+
document = document.lower().replace("\n", " ")
|
655 |
+
pred = model_lang_id.predict(document)
|
656 |
+
lang_pred_fasttext_id = pred[0][0].replace("__label__", "")
|
657 |
+
score_pred = pred[1][0]
|
658 |
+
lang_pred_dataset_id = langs_id.loc[
|
659 |
+
langs_id["fasttext_id"] == lang_pred_fasttext_id, "dataset_id"
|
660 |
+
]
|
661 |
+
if len(lang_pred_dataset_id) > 0:
|
662 |
+
lang_pred_dataset_id = lang_pred_dataset_id.iloc[0]
|
663 |
+
else:
|
664 |
+
lang_pred_dataset_id = "unknown"
|
665 |
+
return lang_pred_dataset_id, score_pred
|
666 |
+
|
667 |
+
@staticmethod
|
668 |
+
def check_lang_id(
|
669 |
+
document,
|
670 |
+
lang_dataset_id,
|
671 |
+
model_lang_id,
|
672 |
+
lang_id_min_cutoff,
|
673 |
+
):
|
674 |
+
cond = True
|
675 |
+
if model_lang_id:
|
676 |
+
lang_pred_dataset_id, score_pred = Filtering.compute_lang_id_pred_score(
|
677 |
+
document, model_lang_id
|
678 |
+
)
|
679 |
+
cond = (lang_pred_dataset_id == lang_dataset_id) and (
|
680 |
+
score_pred >= lang_id_min_cutoff
|
681 |
+
)
|
682 |
+
return cond
|
683 |
+
|
684 |
+
@staticmethod
|
685 |
+
def compute_perplexity_score(document, sentencepiece_model, kenlm_model):
|
686 |
+
document = ModifyingDocuments.normalization(
|
687 |
+
document=document,
|
688 |
+
remove_non_printing_characters=True,
|
689 |
+
strip=True,
|
690 |
+
lower_case=False,
|
691 |
+
uniform_whitespace=True,
|
692 |
+
replace_digits_with_zeros=True,
|
693 |
+
replace_unicode_punctuation=True,
|
694 |
+
)
|
695 |
+
document = ModifyingDocuments.tokenization(
|
696 |
+
document, sentencepiece_model, join_on_whitespace=True
|
697 |
+
)
|
698 |
+
doc_log_score, doc_length = 0, 0
|
699 |
+
for line in document.split("\n"):
|
700 |
+
log_score = kenlm_model.score(line)
|
701 |
+
length = len(line.split()) + 1
|
702 |
+
doc_log_score += log_score
|
703 |
+
doc_length += length
|
704 |
+
pp_score = 10.0 ** (-doc_log_score / doc_length)
|
705 |
+
pp_score = round(pp_score, 1)
|
706 |
+
return pp_score
|
707 |
+
|
708 |
+
@staticmethod
|
709 |
+
def check_perplexity(
|
710 |
+
document,
|
711 |
+
sentencepiece_model,
|
712 |
+
kenlm_model,
|
713 |
+
perplexity_max_cutoff,
|
714 |
+
):
|
715 |
+
cond = True
|
716 |
+
if kenlm_model:
|
717 |
+
score = Filtering.compute_perplexity_score(
|
718 |
+
document, sentencepiece_model, kenlm_model
|
719 |
+
)
|
720 |
+
cond = score <= perplexity_max_cutoff
|
721 |
+
return cond
|
722 |
+
|
723 |
+
@staticmethod
|
724 |
+
def filtering(
|
725 |
+
document,
|
726 |
+
cond_check_number_words,
|
727 |
+
sentencepiece_model_tok,
|
728 |
+
strip_characters,
|
729 |
+
number_words_min_cutoff,
|
730 |
+
number_words_max_cutoff,
|
731 |
+
cond_check_character_repetition_removal,
|
732 |
+
character_repetition_length,
|
733 |
+
character_repetition_max_cutoff,
|
734 |
+
cond_check_word_repetition_removal,
|
735 |
+
word_repetition_length,
|
736 |
+
word_repetition_max_cutoff,
|
737 |
+
cond_check_special_characters,
|
738 |
+
special_characters,
|
739 |
+
special_characters_max_cutoff,
|
740 |
+
cond_words_augmentation,
|
741 |
+
words_augmentation_group_sizes,
|
742 |
+
words_augmentation_join_char,
|
743 |
+
cond_check_stopwords,
|
744 |
+
stopwords,
|
745 |
+
stopwords_min_cutoff,
|
746 |
+
cond_check_flagged_words,
|
747 |
+
flagged_words,
|
748 |
+
flagged_words_max_cutoff,
|
749 |
+
cond_check_lang_id,
|
750 |
+
lang_dataset_id,
|
751 |
+
model_lang_id,
|
752 |
+
lang_id_min_cutoff,
|
753 |
+
cond_check_perplexity,
|
754 |
+
sentencepiece_model,
|
755 |
+
kenlm_model,
|
756 |
+
perplexity_max_cutoff,
|
757 |
+
):
|
758 |
+
if cond_check_number_words:
|
759 |
+
if not Filtering.check_number_words(
|
760 |
+
document,
|
761 |
+
sentencepiece_model_tok,
|
762 |
+
strip_characters,
|
763 |
+
number_words_min_cutoff,
|
764 |
+
number_words_max_cutoff,
|
765 |
+
):
|
766 |
+
return False
|
767 |
+
if cond_check_character_repetition_removal:
|
768 |
+
if not Filtering.check_character_repetition_removal(
|
769 |
+
document,
|
770 |
+
character_repetition_length,
|
771 |
+
character_repetition_max_cutoff,
|
772 |
+
):
|
773 |
+
return False
|
774 |
+
if cond_check_word_repetition_removal:
|
775 |
+
if not Filtering.check_word_repetition_removal(
|
776 |
+
document,
|
777 |
+
sentencepiece_model_tok,
|
778 |
+
strip_characters,
|
779 |
+
word_repetition_length,
|
780 |
+
word_repetition_max_cutoff,
|
781 |
+
):
|
782 |
+
return False
|
783 |
+
if cond_check_special_characters:
|
784 |
+
if not Filtering.check_special_characters(
|
785 |
+
document,
|
786 |
+
special_characters,
|
787 |
+
special_characters_max_cutoff,
|
788 |
+
):
|
789 |
+
return False
|
790 |
+
if cond_check_stopwords:
|
791 |
+
if not Filtering.check_stopwords(
|
792 |
+
document,
|
793 |
+
sentencepiece_model_tok,
|
794 |
+
strip_characters,
|
795 |
+
cond_words_augmentation,
|
796 |
+
words_augmentation_group_sizes,
|
797 |
+
words_augmentation_join_char,
|
798 |
+
stopwords,
|
799 |
+
stopwords_min_cutoff,
|
800 |
+
):
|
801 |
+
return False
|
802 |
+
if cond_check_flagged_words:
|
803 |
+
if not Filtering.check_flagged_words(
|
804 |
+
document,
|
805 |
+
sentencepiece_model_tok,
|
806 |
+
strip_characters,
|
807 |
+
cond_words_augmentation,
|
808 |
+
words_augmentation_group_sizes,
|
809 |
+
words_augmentation_join_char,
|
810 |
+
flagged_words,
|
811 |
+
flagged_words_max_cutoff,
|
812 |
+
):
|
813 |
+
return False
|
814 |
+
if cond_check_lang_id:
|
815 |
+
if not Filtering.check_lang_id(
|
816 |
+
document,
|
817 |
+
lang_dataset_id,
|
818 |
+
model_lang_id,
|
819 |
+
lang_id_min_cutoff,
|
820 |
+
):
|
821 |
+
return False
|
822 |
+
if cond_check_perplexity:
|
823 |
+
if not Filtering.check_perplexity(
|
824 |
+
document,
|
825 |
+
sentencepiece_model,
|
826 |
+
kenlm_model,
|
827 |
+
perplexity_max_cutoff,
|
828 |
+
):
|
829 |
+
return False
|
830 |
+
return True
|
831 |
+
|
832 |
+
|
833 |
+
class FunctionDatasetFiltering:
|
834 |
+
def __init__(
|
835 |
+
self,
|
836 |
+
lang_dataset_id,
|
837 |
+
path_fasttext_model,
|
838 |
+
path_sentencepiece_model,
|
839 |
+
path_kenlm_model,
|
840 |
+
):
|
841 |
+
self.lang_dataset_id = lang_dataset_id
|
842 |
+
self.path_fasttext_model = path_fasttext_model
|
843 |
+
self.path_sentencepiece_model = path_sentencepiece_model
|
844 |
+
self.path_kenlm_model = path_kenlm_model
|
845 |
+
|
846 |
+
self.param = LoadParameters.load_parameters(lang_dataset_id)
|
847 |
+
self.stopwords = LoadParameters.load_stopwords(lang_dataset_id)
|
848 |
+
self.flagged_words = LoadParameters.load_flagged_words(lang_dataset_id)
|
849 |
+
self.model_lang_id = LoadParameters.load_model_lang_id(
|
850 |
+
lang_dataset_id, path_fasttext_model
|
851 |
+
)
|
852 |
+
self.sentencepiece_model = LoadParameters.load_sentencepiece_model(
|
853 |
+
lang_dataset_id, path_sentencepiece_model
|
854 |
+
)
|
855 |
+
self.sentencepiece_model_tok = (
|
856 |
+
self.sentencepiece_model if self.param["tokenization"] else None
|
857 |
+
)
|
858 |
+
self.kenlm_model = LoadParameters.load_kenlm_model(
|
859 |
+
lang_dataset_id, path_kenlm_model
|
860 |
+
)
|
861 |
+
|
862 |
+
def __call__(self, example):
|
863 |
+
keep_example = Filtering.filtering(
|
864 |
+
document=example["text"],
|
865 |
+
cond_check_number_words=self.param["cond_check_number_words"],
|
866 |
+
sentencepiece_model_tok=self.sentencepiece_model_tok,
|
867 |
+
strip_characters=self.param["strip_characters"],
|
868 |
+
number_words_min_cutoff=self.param["number_words_min_cutoff"],
|
869 |
+
number_words_max_cutoff=self.param["number_words_max_cutoff"],
|
870 |
+
cond_check_character_repetition_removal=self.param[
|
871 |
+
"cond_check_character_repetition_removal"
|
872 |
+
],
|
873 |
+
character_repetition_length=self.param["character_repetition_length"],
|
874 |
+
character_repetition_max_cutoff=self.param[
|
875 |
+
"character_repetition_max_cutoff"
|
876 |
+
],
|
877 |
+
cond_check_word_repetition_removal=self.param[
|
878 |
+
"cond_check_word_repetition_removal"
|
879 |
+
],
|
880 |
+
word_repetition_length=self.param["word_repetition_length"],
|
881 |
+
word_repetition_max_cutoff=self.param["word_repetition_max_cutoff"],
|
882 |
+
cond_check_special_characters=self.param["cond_check_special_characters"],
|
883 |
+
special_characters=self.param["special_characters"],
|
884 |
+
special_characters_max_cutoff=self.param["special_characters_max_cutoff"],
|
885 |
+
cond_words_augmentation=self.param["cond_words_augmentation"],
|
886 |
+
words_augmentation_group_sizes=self.param["words_augmentation_group_sizes"],
|
887 |
+
words_augmentation_join_char=self.param["words_augmentation_join_char"],
|
888 |
+
cond_check_stopwords=self.param["cond_check_stopwords"],
|
889 |
+
stopwords=self.stopwords,
|
890 |
+
stopwords_min_cutoff=self.param["stopwords_min_cutoff"],
|
891 |
+
cond_check_flagged_words=self.param["cond_check_flagged_words"],
|
892 |
+
flagged_words=self.flagged_words,
|
893 |
+
flagged_words_max_cutoff=self.param["flagged_words_max_cutoff"],
|
894 |
+
cond_check_lang_id=self.param["cond_check_lang_id"],
|
895 |
+
lang_dataset_id=self.lang_dataset_id,
|
896 |
+
model_lang_id=self.model_lang_id,
|
897 |
+
lang_id_min_cutoff=self.param["lang_id_min_cutoff"],
|
898 |
+
cond_check_perplexity=self.param["cond_check_perplexity"],
|
899 |
+
sentencepiece_model=self.sentencepiece_model,
|
900 |
+
kenlm_model=self.kenlm_model,
|
901 |
+
perplexity_max_cutoff=self.param["perplexity_max_cutoff"],
|
902 |
+
)
|
903 |
+
return keep_example
|
904 |
+
|
905 |
+
def __reduce__(self):
|
906 |
+
return (
|
907 |
+
self.__class__,
|
908 |
+
(
|
909 |
+
self.lang_dataset_id,
|
910 |
+
self.path_fasttext_model,
|
911 |
+
self.path_sentencepiece_model,
|
912 |
+
self.path_kenlm_model,
|
913 |
+
),
|
914 |
+
)
|
915 |
+
|
916 |
+
|
917 |
+
class DatasetFiltering:
|
918 |
+
def __init__(
|
919 |
+
self,
|
920 |
+
dataset,
|
921 |
+
lang_dataset_id,
|
922 |
+
path_fasttext_model,
|
923 |
+
path_sentencepiece_model,
|
924 |
+
path_kenlm_model,
|
925 |
+
num_proc,
|
926 |
+
path_dir_save_dataset,
|
927 |
+
):
|
928 |
+
self.ds = dataset
|
929 |
+
self.lang_dataset_id = lang_dataset_id
|
930 |
+
self.path_fasttext_model = path_fasttext_model
|
931 |
+
self.path_sentencepiece_model = path_sentencepiece_model
|
932 |
+
self.path_kenlm_model = path_kenlm_model
|
933 |
+
self.num_proc = num_proc
|
934 |
+
self.path_dir_save_dataset = path_dir_save_dataset
|
935 |
+
|
936 |
+
def modifying_documents(self):
|
937 |
+
func_dataset_modifying_documents = FunctionDatasetModifyingDocuments(
|
938 |
+
self.lang_dataset_id
|
939 |
+
)
|
940 |
+
self.ds = self.ds.map(func_dataset_modifying_documents, num_proc=self.num_proc)
|
941 |
+
|
942 |
+
def filtering(self):
|
943 |
+
func_dataset_filtering = FunctionDatasetFiltering(
|
944 |
+
self.lang_dataset_id,
|
945 |
+
self.path_fasttext_model,
|
946 |
+
self.path_sentencepiece_model,
|
947 |
+
self.path_kenlm_model,
|
948 |
+
)
|
949 |
+
self.ds = self.ds.filter(func_dataset_filtering, num_proc=self.num_proc)
|
950 |
+
|
951 |
+
def save_dataset(self):
|
952 |
+
pathlib.Path(self.path_dir_save_dataset).mkdir(parents=True, exist_ok=True)
|
953 |
+
path_dir_save_dataset = pathlib.PurePath(
|
954 |
+
self.path_dir_save_dataset, self.lang_dataset_id
|
955 |
+
)
|
956 |
+
pathlib.Path(path_dir_save_dataset).mkdir(parents=True, exist_ok=True)
|
957 |
+
self.ds.save_to_disk(path_dir_save_dataset)
|
flagged_words.py
ADDED
@@ -0,0 +1,1055 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Merge
|
2 |
+
# https://github.com/zacanger/profane-words
|
3 |
+
# and
|
4 |
+
# https://github.com/thisandagain/washyourmouthoutwithsoap/blob/develop/data/build.json
|
5 |
+
# and
|
6 |
+
# https://github.com/LDNOOBW/List-of-Dirty-Naughty-Obscene-and-Otherwise-Bad-Words
|
7 |
+
|
8 |
+
|
9 |
+
english_flagged_words = [
|
10 |
+
"anal",
|
11 |
+
"bareback",
|
12 |
+
"bbw",
|
13 |
+
"bdsm",
|
14 |
+
"blowjob",
|
15 |
+
"blowjobs",
|
16 |
+
"brazzers",
|
17 |
+
"bukkake",
|
18 |
+
"camgirl",
|
19 |
+
"camwhore",
|
20 |
+
"cocksucking",
|
21 |
+
"cougar",
|
22 |
+
"creampie",
|
23 |
+
"cuckold",
|
24 |
+
"cum",
|
25 |
+
"cumming",
|
26 |
+
"cums",
|
27 |
+
"cumshot",
|
28 |
+
"cumshots",
|
29 |
+
"cumslut",
|
30 |
+
"cunnilingus",
|
31 |
+
"deepthroat",
|
32 |
+
"deepthroating",
|
33 |
+
"dildo",
|
34 |
+
"dildos",
|
35 |
+
"dogging",
|
36 |
+
"doggystyle",
|
37 |
+
"dominatrix",
|
38 |
+
"erotic",
|
39 |
+
"fellatio",
|
40 |
+
"femdom",
|
41 |
+
"fingering",
|
42 |
+
"fisting",
|
43 |
+
"footjob",
|
44 |
+
"gangbang",
|
45 |
+
"handjob",
|
46 |
+
"hentai",
|
47 |
+
"horney",
|
48 |
+
"horniest",
|
49 |
+
"horny",
|
50 |
+
"jism",
|
51 |
+
"jizz",
|
52 |
+
"masterbating",
|
53 |
+
"masturbate",
|
54 |
+
"masturbating",
|
55 |
+
"masturbation",
|
56 |
+
"milf",
|
57 |
+
"orgies",
|
58 |
+
"orgy",
|
59 |
+
"pegging",
|
60 |
+
"porn",
|
61 |
+
"pornhub",
|
62 |
+
"porno",
|
63 |
+
"pornos",
|
64 |
+
"pornstar",
|
65 |
+
"pornstars",
|
66 |
+
"redtube",
|
67 |
+
"rimming",
|
68 |
+
"slutty",
|
69 |
+
"squirting",
|
70 |
+
"strapon",
|
71 |
+
"threesome",
|
72 |
+
"vibrator",
|
73 |
+
"xhamster",
|
74 |
+
"xnxx",
|
75 |
+
"xvideos",
|
76 |
+
"xxx",
|
77 |
+
"youporn",
|
78 |
+
]
|
79 |
+
|
80 |
+
|
81 |
+
flagged_words = {
|
82 |
+
"ar": english_flagged_words
|
83 |
+
+ [
|
84 |
+
"إباحي",
|
85 |
+
"احتلام",
|
86 |
+
"است",
|
87 |
+
"استمناء",
|
88 |
+
"اغتصاب",
|
89 |
+
"أورغازم",
|
90 |
+
"إيروتيك",
|
91 |
+
"أير",
|
92 |
+
"بز",
|
93 |
+
"بزاز",
|
94 |
+
"بظر",
|
95 |
+
"بورن",
|
96 |
+
"بيضان",
|
97 |
+
"مص",
|
98 |
+
"ثدي",
|
99 |
+
"جماع",
|
100 |
+
"جنس",
|
101 |
+
"حلمة",
|
102 |
+
"خلاعة",
|
103 |
+
"خنثي",
|
104 |
+
"خول",
|
105 |
+
"دعارة",
|
106 |
+
"زب",
|
107 |
+
"سحاق",
|
108 |
+
"سحاقية",
|
109 |
+
"سكس",
|
110 |
+
"سيكس",
|
111 |
+
"شاذ",
|
112 |
+
"شبق",
|
113 |
+
"شرج",
|
114 |
+
"شرموطة",
|
115 |
+
"شهواني",
|
116 |
+
"شهوة",
|
117 |
+
"طيز",
|
118 |
+
"عادة السرية",
|
119 |
+
"عاهرة",
|
120 |
+
"عرص",
|
121 |
+
"فاسقة",
|
122 |
+
"فرج",
|
123 |
+
"قحبة",
|
124 |
+
"قضيب",
|
125 |
+
"كس",
|
126 |
+
"لحس",
|
127 |
+
"لعق",
|
128 |
+
"لواط",
|
129 |
+
"لوطي",
|
130 |
+
"مؤخرة",
|
131 |
+
"متناك",
|
132 |
+
"متناكة",
|
133 |
+
"مومس",
|
134 |
+
"مثير",
|
135 |
+
"مص",
|
136 |
+
"مضاجعة",
|
137 |
+
"مفلقسة",
|
138 |
+
"مني",
|
139 |
+
"مهتاج",
|
140 |
+
"نشوة",
|
141 |
+
"نكاح",
|
142 |
+
"نيك",
|
143 |
+
],
|
144 |
+
"ca": english_flagged_words
|
145 |
+
+ [
|
146 |
+
"cagarro",
|
147 |
+
"cagarros",
|
148 |
+
"cipote",
|
149 |
+
"cipotes",
|
150 |
+
"collons",
|
151 |
+
"colló",
|
152 |
+
"consolador",
|
153 |
+
"consoladors",
|
154 |
+
"cony",
|
155 |
+
"conys",
|
156 |
+
"corre's",
|
157 |
+
"corre't",
|
158 |
+
"corregut",
|
159 |
+
"cunillingus",
|
160 |
+
"córrer-se",
|
161 |
+
"escorreguda",
|
162 |
+
"escorregudes",
|
163 |
+
"escorregut",
|
164 |
+
"escrot",
|
165 |
+
"escrots",
|
166 |
+
"escórre's",
|
167 |
+
"escórre't",
|
168 |
+
"escórrer-se",
|
169 |
+
"mamada",
|
170 |
+
"mamadera",
|
171 |
+
"mamaderes",
|
172 |
+
"mamades",
|
173 |
+
"masturba",
|
174 |
+
"masturbacions",
|
175 |
+
"masturbació",
|
176 |
+
"masturbant",
|
177 |
+
"masturbar",
|
178 |
+
"masturbar-se",
|
179 |
+
"masturbat",
|
180 |
+
"masturbats",
|
181 |
+
"masturbes",
|
182 |
+
"orgasme",
|
183 |
+
"orgasmes",
|
184 |
+
"ou",
|
185 |
+
"ous",
|
186 |
+
"palla",
|
187 |
+
"palles",
|
188 |
+
"pornografia",
|
189 |
+
"semen",
|
190 |
+
"semens",
|
191 |
+
"verga",
|
192 |
+
"vergues",
|
193 |
+
"xxx",
|
194 |
+
],
|
195 |
+
"en": english_flagged_words,
|
196 |
+
"es": english_flagged_words
|
197 |
+
+ [
|
198 |
+
"chupar el coño",
|
199 |
+
"chupar la concha",
|
200 |
+
"chupar la polla",
|
201 |
+
"chupar la verga",
|
202 |
+
"comer el coño",
|
203 |
+
"comer la concha",
|
204 |
+
"comer la polla",
|
205 |
+
"comer la verga",
|
206 |
+
"coprofagía",
|
207 |
+
"correrse",
|
208 |
+
"cunillingus",
|
209 |
+
"fagging",
|
210 |
+
"felación",
|
211 |
+
"felching",
|
212 |
+
"follada",
|
213 |
+
"follador de culo",
|
214 |
+
"folladores",
|
215 |
+
"fudge packer",
|
216 |
+
"hacer una paja",
|
217 |
+
"hacerse una paja",
|
218 |
+
"hore",
|
219 |
+
"kock",
|
220 |
+
"macizorra",
|
221 |
+
"madre folladora",
|
222 |
+
"mamada",
|
223 |
+
"perro follador",
|
224 |
+
"pisser",
|
225 |
+
"pornografía",
|
226 |
+
"sado",
|
227 |
+
"sadomasoquismo",
|
228 |
+
"sadomasoquista",
|
229 |
+
"sexo anal",
|
230 |
+
"skank",
|
231 |
+
"smegma",
|
232 |
+
"x clasificado",
|
233 |
+
],
|
234 |
+
"eu": english_flagged_words + [],
|
235 |
+
"fr": english_flagged_words
|
236 |
+
+ [
|
237 |
+
"baiseurs",
|
238 |
+
"baiseur",
|
239 |
+
"baiseuse",
|
240 |
+
"baiseuses",
|
241 |
+
"branlette",
|
242 |
+
"branlettes",
|
243 |
+
"branleuse",
|
244 |
+
"branleuses",
|
245 |
+
"cunillingus",
|
246 |
+
"cunilingus",
|
247 |
+
"enculée",
|
248 |
+
"enculées",
|
249 |
+
"enculation",
|
250 |
+
"enculations",
|
251 |
+
"enculement",
|
252 |
+
"enculements",
|
253 |
+
"fellation",
|
254 |
+
"fellations",
|
255 |
+
"porno",
|
256 |
+
"pornos",
|
257 |
+
"pornographie",
|
258 |
+
"pornographique",
|
259 |
+
"pornographiques",
|
260 |
+
"salope",
|
261 |
+
"salopes",
|
262 |
+
"suceuse",
|
263 |
+
"suceuses",
|
264 |
+
"xxx",
|
265 |
+
],
|
266 |
+
"ha": english_flagged_words
|
267 |
+
+ [
|
268 |
+
"bf",
|
269 |
+
"bura",
|
270 |
+
"burar",
|
271 |
+
"cin gindi",
|
272 |
+
"duri",
|
273 |
+
"durin",
|
274 |
+
"gindi",
|
275 |
+
"gindin",
|
276 |
+
"guntsu",
|
277 |
+
"guntsun",
|
278 |
+
"karuwa",
|
279 |
+
"karuwai",
|
280 |
+
"karuwar",
|
281 |
+
"maniyyi",
|
282 |
+
"maɗigo",
|
283 |
+
"maɗugo",
|
284 |
+
"nonuwa",
|
285 |
+
"shan gindi",
|
286 |
+
"tsuliya",
|
287 |
+
"tsuliyariskanci",
|
288 |
+
"ɗuwaiwai",
|
289 |
+
"ɗuwaiwan",
|
290 |
+
"ɗuwawu",
|
291 |
+
"ɗuwawun",
|
292 |
+
],
|
293 |
+
"hi": english_flagged_words
|
294 |
+
+ [
|
295 |
+
"अंडकोश की थैली",
|
296 |
+
"एक्स रेटेड",
|
297 |
+
"ओगाज़्म",
|
298 |
+
"कामोद्दीपक चित्र",
|
299 |
+
"कालीन का चूरा",
|
300 |
+
"कून",
|
301 |
+
"कॉक",
|
302 |
+
"गेंद का थैला",
|
303 |
+
"चाकलेट का रंग",
|
304 |
+
"चूची",
|
305 |
+
"चूतड़",
|
306 |
+
"झटका बंद",
|
307 |
+
"ठगना पैकर",
|
308 |
+
"डिल्डो",
|
309 |
+
"नितंब",
|
310 |
+
"पिछाड़ी",
|
311 |
+
"पीड़न कामुक",
|
312 |
+
"पॉर्न",
|
313 |
+
"फटना",
|
314 |
+
"फूहड़",
|
315 |
+
"बट",
|
316 |
+
"बहुत मदहोश",
|
317 |
+
"बेल अंत",
|
318 |
+
"भगवान-शापित",
|
319 |
+
"भगशेफ",
|
320 |
+
"माँ कमीने",
|
321 |
+
"मुखमैथुन",
|
322 |
+
"मुर्गा चूसने वाला",
|
323 |
+
"रक्तरंजित",
|
324 |
+
"लेबिया",
|
325 |
+
"वहशी",
|
326 |
+
"वहशीता",
|
327 |
+
"वैंग",
|
328 |
+
"शिश्नमल",
|
329 |
+
"संभोग सुख",
|
330 |
+
"सह शॉट",
|
331 |
+
"सींग का बना हुआ",
|
332 |
+
"होर",
|
333 |
+
"घपा घप",
|
334 |
+
"चुदाई",
|
335 |
+
"चुदक्कड़",
|
336 |
+
],
|
337 |
+
"id": english_flagged_words
|
338 |
+
+ [
|
339 |
+
"bokep",
|
340 |
+
"coli",
|
341 |
+
"colmek",
|
342 |
+
"grepe",
|
343 |
+
"horni",
|
344 |
+
"janda",
|
345 |
+
"jembut",
|
346 |
+
"jilat memek",
|
347 |
+
"jilmek",
|
348 |
+
"kontol",
|
349 |
+
"masturbasi",
|
350 |
+
"memek",
|
351 |
+
"ngentot",
|
352 |
+
"ngewe",
|
353 |
+
"peju",
|
354 |
+
"pepek",
|
355 |
+
"pornografi",
|
356 |
+
"sange",
|
357 |
+
"sepong",
|
358 |
+
"tusbol",
|
359 |
+
],
|
360 |
+
"kn": english_flagged_words
|
361 |
+
+ [
|
362 |
+
"ಗರ್ಭಪಾತ",
|
363 |
+
"ಗುದ",
|
364 |
+
"ಗುದದ್ವಾರ",
|
365 |
+
"ಕತ್ತೆ",
|
366 |
+
"ಆಶ್-ಫಕರ್",
|
367 |
+
"ಅಸ್ಹೋಲ್",
|
368 |
+
"ಅಸೋಲೆಸ್",
|
369 |
+
"ಬಾಲ್ಬಾಗ್",
|
370 |
+
"ಚೆಂಡುಗಳು",
|
371 |
+
"ಬಾಸ್ಟರ್ಡ್",
|
372 |
+
"ಬೆಲೆಂಡ್",
|
373 |
+
"ಮೃದ್ವಂಗಿ",
|
374 |
+
"ಪ್ರಾಣಿಜನ್ಯತೆ",
|
375 |
+
"ಬಿಚ್",
|
376 |
+
"ಬಿಟ್ಚಿಸ್",
|
377 |
+
"ಬೆಚಿಂಗ್",
|
378 |
+
"ರಕ್ತಸಿಕ್ತ",
|
379 |
+
"ಬ್ಲೋಜಾಬ್",
|
380 |
+
"ಬೊಲ್ಲೊಕ್",
|
381 |
+
"ಕುರುಚಲು ಗಿಡ",
|
382 |
+
"ಬೂಬಿಗಳು",
|
383 |
+
"ಸ್ತನಗಳನ್ನು",
|
384 |
+
"ಬುಕೆಟಾ",
|
385 |
+
"ತಿಕ",
|
386 |
+
"ಬಟ್",
|
387 |
+
"ಕಾರ್ಪೆಟ್ ಮಂಚರ್",
|
388 |
+
"ಚಿಂಕ್",
|
389 |
+
"ಸಿಪಾ",
|
390 |
+
"ಚಂದ್ರನಾಡಿ",
|
391 |
+
"ಕೋಳಿ",
|
392 |
+
"ಕೋಳಿ ಸಕ್ಕರ್",
|
393 |
+
"ಕಾಕ್ಸ್",
|
394 |
+
"ಕೂನ್",
|
395 |
+
"ಅಮೇಧ್ಯ",
|
396 |
+
"ಕಮ್",
|
397 |
+
"ಕಮ್ಶಾಟ್",
|
398 |
+
"ಕುನಿಲ್ಲಸ್",
|
399 |
+
"ಕಂಟ್",
|
400 |
+
"ಡ್ಯಾಮ್",
|
401 |
+
"ಡಿಕ್",
|
402 |
+
"ದ್ವಿಧ್ರುವಿ",
|
403 |
+
"dildos",
|
404 |
+
"ಡಿಂಕ್",
|
405 |
+
"ನಾಯಿ-ಫಕರ್",
|
406 |
+
"ಡಚೆ",
|
407 |
+
"ಡೈಕ್",
|
408 |
+
"ಹೊರಹೊಮ್ಮಿಸು",
|
409 |
+
"ಸ್ಫೂರ್ತಿ",
|
410 |
+
"ಎಜಾಕ್ಯುಲೇಟ್ಸ್",
|
411 |
+
"ಇಜಲಲೇಟಿಂಗ್",
|
412 |
+
"ಉದ್ಗಾರ",
|
413 |
+
"ತಮಾಷೆ",
|
414 |
+
"ಮಂದಗತಿ",
|
415 |
+
"ಮಬ್ಬು",
|
416 |
+
"fagots",
|
417 |
+
"ಫ್ಯಾನಿ",
|
418 |
+
"ಹೊಡೆತ",
|
419 |
+
"ಪತನ",
|
420 |
+
"ಚಾಚುಪಟ್ಟಿ",
|
421 |
+
"ಫಕ್",
|
422 |
+
"ನಾಶವಾಗಿದ್ದನು",
|
423 |
+
"ಫಕರ್",
|
424 |
+
"fuckers",
|
425 |
+
"ಫಕಿಂಗ್",
|
426 |
+
"ಫಕಿಂಗ್ಸ್",
|
427 |
+
"ಇಷ್ಟಪಡುತ್ತಾನೆ",
|
428 |
+
"ಮಿಠಾಯಿ ಪ್ಯಾಕರ್",
|
429 |
+
"ದೇವರನ್ನು ಹಾನಿಗೊಳಗಾಯಿತು",
|
430 |
+
"ಗಾಡ್ಡಮ್",
|
431 |
+
"ನರಕ",
|
432 |
+
"ಹೋರ್",
|
433 |
+
"ಮೊನಚಾದ",
|
434 |
+
"ಜರ್ಕ್-ಆಫ್",
|
435 |
+
"ಕೋಕ್",
|
436 |
+
"ಯೋನಿಯ",
|
437 |
+
"ಕಾಮ",
|
438 |
+
"ಕಾಮುಕ",
|
439 |
+
"ಮಾಸೋಚಿಸ್ಟ್",
|
440 |
+
"ಹಸ್ತಮೈಥುನ ಮಾಡು",
|
441 |
+
"ತಾಯಿ ಫಕರ್",
|
442 |
+
"ನಾಜಿ",
|
443 |
+
"ನಿಗರ್",
|
444 |
+
"ನಿಗ್ಗರ್ಗಳು",
|
445 |
+
"ಒರಾಸಿಮ್",
|
446 |
+
"ಪರಾಕಾಷ್ಠೆ",
|
447 |
+
"ಪರಾಕಾಷ್ಠೆಗಳನ್ನು",
|
448 |
+
"ಪೆಕರ್",
|
449 |
+
"ಶಿಶ್ನ",
|
450 |
+
"ಮೂತ್ರ ವಿಸರ್ಜಿಸು",
|
451 |
+
"ನಿರುತ್ಸಾಹಗೊಂಡಿದೆ",
|
452 |
+
"ಪಿಸರ್",
|
453 |
+
"ಮೂತ್ರಪಿಂಡಗಳು",
|
454 |
+
"pissing",
|
455 |
+
"ಪಿಸ್ಸಾಫ್",
|
456 |
+
"ಪೂಪ್",
|
457 |
+
"ಅಶ್ಲೀಲತೆ",
|
458 |
+
"ಅಶ್ಲೀಲ",
|
459 |
+
"ಚುಚ್ಚು",
|
460 |
+
"ಪ್ರಿಕ್ಸ್",
|
461 |
+
"ಪಬ್",
|
462 |
+
"ಪುಸಿಗಳು",
|
463 |
+
"ಪುಸಿ",
|
464 |
+
"ಅತ್ಯಾಚಾರ",
|
465 |
+
"ಅತ್ಯಾಚಾರಿ",
|
466 |
+
"ಗುದನಾಳದ",
|
467 |
+
"ರಿಟಾರ್ಡ್",
|
468 |
+
"ಹಚ್ಚುವುದು",
|
469 |
+
"ದುಃಖಗಾರ",
|
470 |
+
"ತಿರುಗಿಸುವುದು",
|
471 |
+
"ಸ್ಕ್ರೋಟಮ್",
|
472 |
+
"ವೀರ್ಯ",
|
473 |
+
"ಲೈಂಗಿಕತೆ",
|
474 |
+
"ಶಾಗ್",
|
475 |
+
"ಶಾಗ್ಗಿಂಗ್",
|
476 |
+
"ಶೆಮೇಲ್",
|
477 |
+
"ಶಿಟ್",
|
478 |
+
"ಷೈಟ್",
|
479 |
+
"ಶಿಟ್ಸ್",
|
480 |
+
"shitted",
|
481 |
+
"ಅಲುಗಾಡುವಿಕೆ",
|
482 |
+
"ಅಸಹ್ಯ",
|
483 |
+
"ಸ್ಕಾಂಕ್",
|
484 |
+
"ಸೂಳೆ",
|
485 |
+
"ಸ್ಲಟ್ಗಳು",
|
486 |
+
"ಸ್ಮೆಗ್ಮಾ",
|
487 |
+
"ಕೊಳೆತ",
|
488 |
+
"ಸ್ನ್ಯಾಚ್",
|
489 |
+
"ಮಗ-ಆಫ್-ಬಿಚ್",
|
490 |
+
"spac",
|
491 |
+
"ಉಬ್ಬು",
|
492 |
+
"ವೃಷಣ",
|
493 |
+
"ಟಿಟ್",
|
494 |
+
"ಚೇಕಡಿ ಹಕ್ಕಿಗಳು",
|
495 |
+
"turd",
|
496 |
+
"ಯೋನಿ",
|
497 |
+
"ವಯಾಗ್ರ",
|
498 |
+
"ವಾಂಗ್",
|
499 |
+
"ಮುಷ್ಕರ",
|
500 |
+
"x ರೇಟೆಡ್",
|
501 |
+
"xxx",
|
502 |
+
],
|
503 |
+
"ml": english_flagged_words
|
504 |
+
+ [
|
505 |
+
"ഗർഭഛിദ്രം",
|
506 |
+
"വിശപ്പ്",
|
507 |
+
"മലദ്വാരം",
|
508 |
+
"കഴുത",
|
509 |
+
"അസി ഫക്കർ",
|
510 |
+
"കഴുതകളെ",
|
511 |
+
"ആസ്ഹോൾ",
|
512 |
+
"അശ്ളീലങ്ങൾ",
|
513 |
+
"ബോൾബാഗ്",
|
514 |
+
"പന്തുകൾ",
|
515 |
+
"തന്തയില്ലാത്തവൻ",
|
516 |
+
"ബെല്ലെൻഡ്",
|
517 |
+
"മൃഗീയമായ",
|
518 |
+
"മൃഗീയത",
|
519 |
+
"ബിച്ച്",
|
520 |
+
"ബിച്ചുകൾ",
|
521 |
+
"ബിപിഡിംഗ്",
|
522 |
+
"രക്തരൂക്ഷിതമായ",
|
523 |
+
"ആശ്വാസം",
|
524 |
+
"ബലോക്ക്",
|
525 |
+
"ബോബ്",
|
526 |
+
"പൂക്കൾ",
|
527 |
+
"സ്തനങ്ങൾ",
|
528 |
+
"ബ്യൂട്ടാ",
|
529 |
+
"ബം",
|
530 |
+
"മയക്കുമരുന്ന്",
|
531 |
+
"പരവതാനി മാൻച്ചർ",
|
532 |
+
"ചുംബ്",
|
533 |
+
"സിപാ",
|
534 |
+
"ക്ലോറിസിസ്",
|
535 |
+
"കോക്ക്",
|
536 |
+
"കോക്ക് സക്കർ",
|
537 |
+
"കോക്സ്",
|
538 |
+
"കോൺ",
|
539 |
+
"ക്രാപ്പ്",
|
540 |
+
"ശുക്ലം",
|
541 |
+
"പുരുഷാരം",
|
542 |
+
"സി",
|
543 |
+
"മുഷിഞ്ഞ",
|
544 |
+
"കഷ്ടം",
|
545 |
+
"ഡിക്ക്",
|
546 |
+
"ഡിൽഡോ",
|
547 |
+
"dildos",
|
548 |
+
"ഡൈൻ",
|
549 |
+
"നായ-ഫക്കർ",
|
550 |
+
"ഡച്ച്",
|
551 |
+
"ഡൈകെ",
|
552 |
+
"ശമിപ്പിക്കുക",
|
553 |
+
"മോഷ്ടിച്ചു",
|
554 |
+
"വികാരങ്ങൾ",
|
555 |
+
"വിരസത",
|
556 |
+
"മടി",
|
557 |
+
"ക്ഷീണിപ്പിക്കുക",
|
558 |
+
"fagot",
|
559 |
+
"വഞ്ചന",
|
560 |
+
"ഫാനി",
|
561 |
+
"വേദന",
|
562 |
+
"flange",
|
563 |
+
"ഊമ്പി",
|
564 |
+
"സംഭോഗം ചെയ്യുക",
|
565 |
+
"ഫക്കർ",
|
566 |
+
"നർമ്മം",
|
567 |
+
"ഫഡ്ജ് പാക്കർ",
|
568 |
+
"ദൈവം-കൊള്ളിത",
|
569 |
+
"ഗോഡ്ഡം",
|
570 |
+
"നരകം",
|
571 |
+
"വയ്ക്കുക",
|
572 |
+
"വൃത്തികെട്ട",
|
573 |
+
"ജെർക് ഓഫ്",
|
574 |
+
"കിക്ക്",
|
575 |
+
"ലാബിയ",
|
576 |
+
"മോഹം",
|
577 |
+
"മോഹഭംഗം",
|
578 |
+
"മാസോച്ചിസ്റ്റ്",
|
579 |
+
"സ്വയംഭോഗം ചെയ്യുക",
|
580 |
+
"അമ്മ ഫക്കർ",
|
581 |
+
"നാസി",
|
582 |
+
"നിഗർ",
|
583 |
+
"മ��ക്കുമരുന്നുകൾ",
|
584 |
+
"രതിമൂർച്ഛ",
|
585 |
+
"പെക്കർ",
|
586 |
+
"ലിംഗം",
|
587 |
+
"മൂത്രമൊഴിക്കുക",
|
588 |
+
"കുഴഞ്ഞുവീഴുന്നു",
|
589 |
+
"പിസ്സർ",
|
590 |
+
"പിസ്സകൾ",
|
591 |
+
"pissing",
|
592 |
+
"പിസ്സോഫ്",
|
593 |
+
"poop",
|
594 |
+
"അശ്ലീലം",
|
595 |
+
"അശ്ലീലത",
|
596 |
+
"പ്രാവി",
|
597 |
+
"വിസർജ്യങ്ങൾ",
|
598 |
+
"പ്യൂബ്",
|
599 |
+
"pussies",
|
600 |
+
"pussy",
|
601 |
+
"ബലാൽസംഗം",
|
602 |
+
"ബലാത്സംഗം",
|
603 |
+
"മലാശയം",
|
604 |
+
"തുടരുക",
|
605 |
+
"റിമ്മിംഗ്",
|
606 |
+
"സചിസ്റ്റ്",
|
607 |
+
"വഞ്ചി",
|
608 |
+
"പുല്ല്",
|
609 |
+
"ബീജം",
|
610 |
+
"ശവം",
|
611 |
+
"ഷാഗിംഗ്",
|
612 |
+
"അവൾ",
|
613 |
+
"ഷീറ്റ്",
|
614 |
+
"ഷെയ്റ്റ്",
|
615 |
+
"shits",
|
616 |
+
"തിന്നിട്ടില്ല",
|
617 |
+
"ഷോർട്ട്",
|
618 |
+
"ഷൈറ്റി",
|
619 |
+
"സ്കാൻ",
|
620 |
+
"മന്ദഹസരം",
|
621 |
+
"സ്നെഗമാ",
|
622 |
+
"പുഞ്ചിരി",
|
623 |
+
"പിടിക്കുക",
|
624 |
+
"വെറുക്കപ്പെട്ടയാൾ",
|
625 |
+
"സ്പെയ്ക്",
|
626 |
+
"തുളച്ച്",
|
627 |
+
"വൃഷണം",
|
628 |
+
"പേ",
|
629 |
+
"ടിത്ത്",
|
630 |
+
"കുഴപ്പമില്ല",
|
631 |
+
"യോനി",
|
632 |
+
"വരാഗ്ര",
|
633 |
+
"വാൽവ",
|
634 |
+
"വാങ്",
|
635 |
+
"വാൻ",
|
636 |
+
"വേശ്യ",
|
637 |
+
"x റേറ്റുചെയ്തു",
|
638 |
+
"xxx",
|
639 |
+
],
|
640 |
+
"mr": english_flagged_words
|
641 |
+
+ [
|
642 |
+
"गर्भपात",
|
643 |
+
"गुदा",
|
644 |
+
"गाढव",
|
645 |
+
"गांडुळ",
|
646 |
+
"asses",
|
647 |
+
"asshole",
|
648 |
+
"assholes",
|
649 |
+
"ballbag",
|
650 |
+
"चेंडू",
|
651 |
+
"बॅस्टर्ड",
|
652 |
+
"बेलेंड",
|
653 |
+
"बेस्टियल",
|
654 |
+
"प्राण्यांबरोबर",
|
655 |
+
"कुत्री",
|
656 |
+
"बिट्स",
|
657 |
+
"खूनी",
|
658 |
+
"blowjob",
|
659 |
+
"बोलोक",
|
660 |
+
"बोब",
|
661 |
+
"स्तन",
|
662 |
+
"बसीटा",
|
663 |
+
"बम",
|
664 |
+
"बट",
|
665 |
+
"कार्पेट मुन्चर",
|
666 |
+
"चिंक",
|
667 |
+
"सिपा",
|
668 |
+
"क्लिटोरिस",
|
669 |
+
"मुर्ख",
|
670 |
+
"मांसाहारी",
|
671 |
+
"कॉक्स",
|
672 |
+
"कॉनन",
|
673 |
+
"बकवास",
|
674 |
+
"सह",
|
675 |
+
"cumshot",
|
676 |
+
"कनिलिंगस",
|
677 |
+
"कांट",
|
678 |
+
"धिक्कार",
|
679 |
+
"डिक",
|
680 |
+
"dildo",
|
681 |
+
"डिल्डो",
|
682 |
+
"डंक",
|
683 |
+
"duche",
|
684 |
+
"डाईक",
|
685 |
+
"उद्गार",
|
686 |
+
"उत्साही",
|
687 |
+
"ejaculates",
|
688 |
+
"उत्सुकता",
|
689 |
+
"स्खलन",
|
690 |
+
"फॅग",
|
691 |
+
"फॅगिंग",
|
692 |
+
"फॅगॉट",
|
693 |
+
"फॅगॉट्स",
|
694 |
+
"फॅनी",
|
695 |
+
"फेलिंग",
|
696 |
+
"फॅलेटीओ",
|
697 |
+
"निकला",
|
698 |
+
"fucked",
|
699 |
+
"गुप्तचर",
|
700 |
+
"fuckers",
|
701 |
+
"fucking",
|
702 |
+
"fuckings",
|
703 |
+
"fucks",
|
704 |
+
"फडगे पॅकर",
|
705 |
+
"देव-शापित",
|
706 |
+
"देव",
|
707 |
+
"नरक",
|
708 |
+
"होरे",
|
709 |
+
"शिंग",
|
710 |
+
"झटका बंद",
|
711 |
+
"कॉक",
|
712 |
+
"लॅबिया",
|
713 |
+
"वासना",
|
714 |
+
"मासोचिस्ट",
|
715 |
+
"हस्तमैथुन करा",
|
716 |
+
"आई माकड",
|
717 |
+
"नाझी",
|
718 |
+
"निगर",
|
719 |
+
"निगार",
|
720 |
+
"ऑर्गॅसिम",
|
721 |
+
"संभोग",
|
722 |
+
"orgasms",
|
723 |
+
"चापटी",
|
724 |
+
"पुरुषाचे जननेंद्रिय",
|
725 |
+
"पेशी",
|
726 |
+
"pissed",
|
727 |
+
"पिसर",
|
728 |
+
"pisses",
|
729 |
+
"पिसिंग",
|
730 |
+
"पिसोफ",
|
731 |
+
"घाट",
|
732 |
+
"अश्लील",
|
733 |
+
"पोर्नोग्राफी",
|
734 |
+
"मुरुम",
|
735 |
+
"प्रिक्स",
|
736 |
+
"प्यूब",
|
737 |
+
"pussies",
|
738 |
+
"मांजर",
|
739 |
+
"बलात्कार",
|
740 |
+
"गुदाशय",
|
741 |
+
"मंद",
|
742 |
+
"rimming",
|
743 |
+
"दुःखी",
|
744 |
+
"screwing",
|
745 |
+
"स्क्रोटम",
|
746 |
+
"वीर्य",
|
747 |
+
"लिंग",
|
748 |
+
"शेग",
|
749 |
+
"shagging",
|
750 |
+
"शेमले",
|
751 |
+
"विचित्र",
|
752 |
+
"shite",
|
753 |
+
"shits",
|
754 |
+
"shitted",
|
755 |
+
"shitting",
|
756 |
+
"shitty",
|
757 |
+
"घाणेरडा",
|
758 |
+
"फट",
|
759 |
+
"sluts",
|
760 |
+
"सुगंध",
|
761 |
+
"स्मट",
|
762 |
+
"छेडछाड",
|
763 |
+
"मुलगा-एक-कुत्री",
|
764 |
+
"spac",
|
765 |
+
"तिरस्कार",
|
766 |
+
"परीक्षक",
|
767 |
+
"शीर्षक",
|
768 |
+
"टिट",
|
769 |
+
"टर्ड",
|
770 |
+
"योनी",
|
771 |
+
"वियाग्रा",
|
772 |
+
"वल्वा",
|
773 |
+
"वांग",
|
774 |
+
"विंक",
|
775 |
+
"वेश्या",
|
776 |
+
"एक्स रेट केले",
|
777 |
+
"xxx",
|
778 |
+
],
|
779 |
+
"pt": english_flagged_words
|
780 |
+
+ [
|
781 |
+
"balalao",
|
782 |
+
"bate uma",
|
783 |
+
"beijo grego",
|
784 |
+
"boceta",
|
785 |
+
"boquete",
|
786 |
+
"buceta",
|
787 |
+
"caralho",
|
788 |
+
"chochota",
|
789 |
+
"coito",
|
790 |
+
"cona",
|
791 |
+
"consolo",
|
792 |
+
"corno",
|
793 |
+
"cu",
|
794 |
+
"dar a bunda",
|
795 |
+
"dar o rabo",
|
796 |
+
"dildo",
|
797 |
+
"dildos",
|
798 |
+
"esporrar",
|
799 |
+
"estrovenga",
|
800 |
+
"felação",
|
801 |
+
"filho da puta",
|
802 |
+
"filhos da puta",
|
803 |
+
"gozada",
|
804 |
+
"jeba",
|
805 |
+
"perereca",
|
806 |
+
"pica",
|
807 |
+
"piru",
|
808 |
+
"porno",
|
809 |
+
"pornografia",
|
810 |
+
"pornô",
|
811 |
+
"porra",
|
812 |
+
"prostituta",
|
813 |
+
"pube",
|
814 |
+
"punheta",
|
815 |
+
"punheteiro",
|
816 |
+
"putaria",
|
817 |
+
"queca",
|
818 |
+
"sexo",
|
819 |
+
"siririca",
|
820 |
+
"tesão",
|
821 |
+
"trepada",
|
822 |
+
"verga",
|
823 |
+
"vibrador",
|
824 |
+
"xana",
|
825 |
+
"xochota",
|
826 |
+
"xoxota",
|
827 |
+
],
|
828 |
+
"ta": english_flagged_words
|
829 |
+
+ [
|
830 |
+
"ஓதா",
|
831 |
+
"ஒத்தா",
|
832 |
+
"புண்டை",
|
833 |
+
"ஒம்மாளே",
|
834 |
+
"பக்கி",
|
835 |
+
"கூமுட்டை",
|
836 |
+
"கருமம்",
|
837 |
+
"சனியன்",
|
838 |
+
"கஸ்மாலம்",
|
839 |
+
"சூத்து",
|
840 |
+
],
|
841 |
+
"te": english_flagged_words
|
842 |
+
+ [
|
843 |
+
"గర్భస్రావం",
|
844 |
+
"అంగ",
|
845 |
+
"పాయువు",
|
846 |
+
"గాడిద",
|
847 |
+
"గాడిద-fucker",
|
848 |
+
"asses",
|
849 |
+
"assholes",
|
850 |
+
"బాల్బ్యాగ్",
|
851 |
+
"బంతుల్లో",
|
852 |
+
"బాస్టర్డ్",
|
853 |
+
"బెల్లెండ్",
|
854 |
+
"మృగ",
|
855 |
+
"బెస్టియాలిటీ",
|
856 |
+
"బిచ్",
|
857 |
+
"bitches",
|
858 |
+
"బిట్చింగ్",
|
859 |
+
"బ్లడీ",
|
860 |
+
"blowjob",
|
861 |
+
"బోల్లక",
|
862 |
+
"బూబ్",
|
863 |
+
"వక్షోజాలను",
|
864 |
+
"ఛాతీ",
|
865 |
+
"buceta",
|
866 |
+
"బం",
|
867 |
+
"బట్",
|
868 |
+
"కార్పెట్ ముంచర్",
|
869 |
+
"చింక్",
|
870 |
+
"cipa",
|
871 |
+
"స్త్రీగుహ్యాంకురము",
|
872 |
+
"ఆత్మవిశ్వాసం",
|
873 |
+
"కాక్-సక్కర్",
|
874 |
+
"కాక్స్",
|
875 |
+
"కూన్",
|
876 |
+
"చెత్త",
|
877 |
+
"కం",
|
878 |
+
"cumshot",
|
879 |
+
"క్యునిల్లింగస్",
|
880 |
+
"కంట్",
|
881 |
+
"తిట్టు",
|
882 |
+
"డిక్",
|
883 |
+
"లైంగిక సంతృప్తి కోసం స్త్రీలు ఉపయోగించే పురుషాంగము వంటి పరికరము",
|
884 |
+
"డిల్డోస్",
|
885 |
+
"dink",
|
886 |
+
"కుక్క-fucker",
|
887 |
+
"డూష్",
|
888 |
+
"డైక్",
|
889 |
+
"స్ఖలించు",
|
890 |
+
"ఎజాక్యులేటెడ్",
|
891 |
+
"ఎజాక్యులేట్స్",
|
892 |
+
"ఎరాక్యులేటింగ్",
|
893 |
+
"స్ఖలనం",
|
894 |
+
"నవుకరు",
|
895 |
+
"ఫాగ్గింగ్",
|
896 |
+
"ఫాగాట్",
|
897 |
+
"ఫగాట్స్",
|
898 |
+
"fanny",
|
899 |
+
"ఫెల్చింగ్",
|
900 |
+
"కుడుచుట",
|
901 |
+
"అచ్చు",
|
902 |
+
"ఫక్",
|
903 |
+
"ఇబ్బంది పెట్టాడు",
|
904 |
+
"fucker",
|
905 |
+
"ఫకర్స్",
|
906 |
+
"ఫకింగ్",
|
907 |
+
"ఫకింగ్స్",
|
908 |
+
"ఫక్స్",
|
909 |
+
"ఫడ్జ్ ప్యాకర్",
|
910 |
+
"దేవతలా మంచిది",
|
911 |
+
"గాడ్డామ్",
|
912 |
+
"నరకం",
|
913 |
+
"హోర్",
|
914 |
+
"horny",
|
915 |
+
"జెర్క్-ఆఫ్",
|
916 |
+
"కాక్",
|
917 |
+
"పెదవి",
|
918 |
+
"కామం",
|
919 |
+
"మనసు పడ్డట్లు చిత్రించారు",
|
920 |
+
"masochist",
|
921 |
+
"హస్తప్రయోగం",
|
922 |
+
"తల్లి ఫెకర్",
|
923 |
+
"నాజీ",
|
924 |
+
"నిగ్గర్",
|
925 |
+
"నిగ్గర్స్",
|
926 |
+
"ఆర్గాసిమ్",
|
927 |
+
"స్కలనం",
|
928 |
+
"orgasms",
|
929 |
+
"pecker",
|
930 |
+
"పురుషాంగం",
|
931 |
+
"విసర్జన",
|
932 |
+
"pissed",
|
933 |
+
"పిస్సర్",
|
934 |
+
"పిస్సీస్",
|
935 |
+
"పిస్సింగ్",
|
936 |
+
"పిస్సాఫ్",
|
937 |
+
"poop",
|
938 |
+
"శృంగార",
|
939 |
+
"పోర్నో",
|
940 |
+
"అశ్లీల",
|
941 |
+
"బుడతడు",
|
942 |
+
"ప్రిక్స్",
|
943 |
+
"ప్యూబ్",
|
944 |
+
"pussies",
|
945 |
+
"పుస్సీ",
|
946 |
+
"రేప్",
|
947 |
+
"ఉన్నప్పటికీ బలాత్కారం",
|
948 |
+
"పురీషనాళం",
|
949 |
+
"రిటార్డ్",
|
950 |
+
"రిమ్మింగ్",
|
951 |
+
"పీడన కాముకత",
|
952 |
+
"screwing",
|
953 |
+
"స్క్రోటమ్",
|
954 |
+
"వీర్యం",
|
955 |
+
"సెక్స్",
|
956 |
+
"బొచ్చు",
|
957 |
+
"షగ్గింగ్",
|
958 |
+
"షీమేల్",
|
959 |
+
"ఒంటి",
|
960 |
+
"షైట్",
|
961 |
+
"షిట్స్",
|
962 |
+
"షిట్టెడ్",
|
963 |
+
"షిట్టింగ్",
|
964 |
+
"shitty",
|
965 |
+
"స్కాన్క్",
|
966 |
+
"నీతి",
|
967 |
+
"స్లట్స్",
|
968 |
+
"శిశ్న",
|
969 |
+
"స్మట్",
|
970 |
+
"స్నాచ్",
|
971 |
+
"ఒక బిచ్ కుమారుడు ఆఫ్",
|
972 |
+
"spac",
|
973 |
+
"స్పంక్",
|
974 |
+
"వృషణాలు",
|
975 |
+
"తునక",
|
976 |
+
"టిట్స్",
|
977 |
+
"టిట్",
|
978 |
+
"turd",
|
979 |
+
"యోని",
|
980 |
+
"వయాగ్రా",
|
981 |
+
"జననాంగం",
|
982 |
+
"వాంగ్",
|
983 |
+
"వ్యాంక్",
|
984 |
+
"వేశ్య",
|
985 |
+
"x రేట్",
|
986 |
+
"xxx",
|
987 |
+
],
|
988 |
+
"vi": english_flagged_words
|
989 |
+
+ [
|
990 |
+
"cặc",
|
991 |
+
"lồn",
|
992 |
+
"địt",
|
993 |
+
"buồi",
|
994 |
+
"đụ",
|
995 |
+
"nứng",
|
996 |
+
"phò",
|
997 |
+
"bú lol",
|
998 |
+
"bú lon",
|
999 |
+
"bú cac",
|
1000 |
+
"bú cak",
|
1001 |
+
"bú cax",
|
1002 |
+
"bú buoi",
|
1003 |
+
"bú mút",
|
1004 |
+
"húp lol",
|
1005 |
+
"húp lon",
|
1006 |
+
"húp sò",
|
1007 |
+
"nung lol",
|
1008 |
+
"nung lon",
|
1009 |
+
"nug lon",
|
1010 |
+
"nung cac",
|
1011 |
+
"nung buoi",
|
1012 |
+
"thèm dit",
|
1013 |
+
"thèm lon",
|
1014 |
+
"thèm lol",
|
1015 |
+
"thèm buoi",
|
1016 |
+
"thèm dit",
|
1017 |
+
"thèm chich",
|
1018 |
+
"thèm chịch",
|
1019 |
+
"thèm cax",
|
1020 |
+
"thèm cak",
|
1021 |
+
"móc lol",
|
1022 |
+
"móc lon",
|
1023 |
+
"buscu",
|
1024 |
+
"lol non",
|
1025 |
+
"bướm non",
|
1026 |
+
"vú to",
|
1027 |
+
"vú bự",
|
1028 |
+
"lon to",
|
1029 |
+
"phim sex",
|
1030 |
+
"phim xex",
|
1031 |
+
"phim xxx",
|
1032 |
+
],
|
1033 |
+
"zh": english_flagged_words
|
1034 |
+
+ [
|
1035 |
+
"三级片",
|
1036 |
+
"乳交",
|
1037 |
+
"卖B",
|
1038 |
+
"卖比",
|
1039 |
+
"卖淫",
|
1040 |
+
"口交",
|
1041 |
+
"姣西",
|
1042 |
+
"打炮",
|
1043 |
+
"打飞机",
|
1044 |
+
"抽插",
|
1045 |
+
"招妓",
|
1046 |
+
"插你",
|
1047 |
+
"插死你",
|
1048 |
+
"淫水",
|
1049 |
+
"肉壁",
|
1050 |
+
"肉棍子",
|
1051 |
+
"肉缝",
|
1052 |
+
"肏",
|
1053 |
+
"肛交",
|
1054 |
+
],
|
1055 |
+
}
|
languages_id.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
|
4 |
+
langs_id = [
|
5 |
+
{
|
6 |
+
"lang": "Afrikaans",
|
7 |
+
"dataset_id": "af",
|
8 |
+
"stopwords_id": "af",
|
9 |
+
"flagged_words_id": None,
|
10 |
+
"fasttext_id": "af",
|
11 |
+
"sentencepiece_id": "af",
|
12 |
+
"kenlm_id": "af",
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"lang": "Arabic",
|
16 |
+
"dataset_id": "ar",
|
17 |
+
"stopwords_id": "ar",
|
18 |
+
"flagged_words_id": "ar",
|
19 |
+
"fasttext_id": "ar",
|
20 |
+
"sentencepiece_id": "ar",
|
21 |
+
"kenlm_id": "ar",
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"lang": "Egyptian Arabic",
|
25 |
+
"dataset_id": "arz",
|
26 |
+
"stopwords_id": None,
|
27 |
+
"flagged_words_id": None,
|
28 |
+
"fasttext_id": "arz",
|
29 |
+
"sentencepiece_id": "arz",
|
30 |
+
"kenlm_id": "arz",
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"lang": "Assamese",
|
34 |
+
"dataset_id": "as",
|
35 |
+
"stopwords_id": None,
|
36 |
+
"flagged_words_id": None,
|
37 |
+
"fasttext_id": "as",
|
38 |
+
"sentencepiece_id": "as",
|
39 |
+
"kenlm_id": "as",
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"lang": "Bengali",
|
43 |
+
"dataset_id": "bn",
|
44 |
+
"stopwords_id": "bn",
|
45 |
+
"flagged_words_id": None,
|
46 |
+
"fasttext_id": "bn",
|
47 |
+
"sentencepiece_id": "bn",
|
48 |
+
"kenlm_id": "bn",
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"lang": "Catalan",
|
52 |
+
"dataset_id": "ca",
|
53 |
+
"stopwords_id": "ca",
|
54 |
+
"flagged_words_id": "ca",
|
55 |
+
"fasttext_id": "ca",
|
56 |
+
"sentencepiece_id": "ca",
|
57 |
+
"kenlm_id": "ca",
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"lang": "English",
|
61 |
+
"dataset_id": "en",
|
62 |
+
"stopwords_id": "en",
|
63 |
+
"flagged_words_id": "en",
|
64 |
+
"fasttext_id": "en",
|
65 |
+
"sentencepiece_id": "en",
|
66 |
+
"kenlm_id": "en",
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"lang": "Spanish",
|
70 |
+
"dataset_id": "es",
|
71 |
+
"stopwords_id": "es",
|
72 |
+
"flagged_words_id": "es",
|
73 |
+
"fasttext_id": "es",
|
74 |
+
"sentencepiece_id": "es",
|
75 |
+
"kenlm_id": "es",
|
76 |
+
},
|
77 |
+
{
|
78 |
+
"lang": "Basque",
|
79 |
+
"dataset_id": "eu",
|
80 |
+
"stopwords_id": "eu",
|
81 |
+
"flagged_words_id": "eu",
|
82 |
+
"fasttext_id": "eu",
|
83 |
+
"sentencepiece_id": "eu",
|
84 |
+
"kenlm_id": "eu",
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"lang": "French",
|
88 |
+
"dataset_id": "fr",
|
89 |
+
"stopwords_id": "fr",
|
90 |
+
"flagged_words_id": "fr",
|
91 |
+
"fasttext_id": "fr",
|
92 |
+
"sentencepiece_id": "fr",
|
93 |
+
"kenlm_id": "fr",
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"lang": "Gujarati",
|
97 |
+
"dataset_id": "gu",
|
98 |
+
"stopwords_id": None,
|
99 |
+
"flagged_words_id": None,
|
100 |
+
"fasttext_id": "gu",
|
101 |
+
"sentencepiece_id": "gu",
|
102 |
+
"kenlm_id": "gu",
|
103 |
+
},
|
104 |
+
{
|
105 |
+
"lang": "Hindi",
|
106 |
+
"dataset_id": "hi",
|
107 |
+
"stopwords_id": "hi",
|
108 |
+
"flagged_words_id": "hi",
|
109 |
+
"fasttext_id": "hi",
|
110 |
+
"sentencepiece_id": "hi",
|
111 |
+
"kenlm_id": "hi",
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"lang": "Indonesian",
|
115 |
+
"dataset_id": "id",
|
116 |
+
"stopwords_id": "id",
|
117 |
+
"flagged_words_id": "id",
|
118 |
+
"fasttext_id": "id",
|
119 |
+
"sentencepiece_id": "id",
|
120 |
+
"kenlm_id": "id",
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"lang": "Kannada",
|
124 |
+
"dataset_id": "kn",
|
125 |
+
"stopwords_id": None,
|
126 |
+
"flagged_words_id": "kn",
|
127 |
+
"fasttext_id": "kn",
|
128 |
+
"sentencepiece_id": "kn",
|
129 |
+
"kenlm_id": "kn",
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"lang": "Malayalam",
|
133 |
+
"dataset_id": "ml",
|
134 |
+
"stopwords_id": None,
|
135 |
+
"flagged_words_id": "ml",
|
136 |
+
"fasttext_id": "ml",
|
137 |
+
"sentencepiece_id": "ml",
|
138 |
+
"kenlm_id": "ml",
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"lang": "Marathi",
|
142 |
+
"dataset_id": "mr",
|
143 |
+
"stopwords_id": "mr",
|
144 |
+
"flagged_words_id": "mr",
|
145 |
+
"fasttext_id": "mr",
|
146 |
+
"sentencepiece_id": "mr",
|
147 |
+
"kenlm_id": "mr",
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"lang": "Portuguese",
|
151 |
+
"dataset_id": "pt",
|
152 |
+
"stopwords_id": "pt",
|
153 |
+
"flagged_words_id": "pt",
|
154 |
+
"fasttext_id": "pt",
|
155 |
+
"sentencepiece_id": "pt",
|
156 |
+
"kenlm_id": "pt",
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"lang": "Swahili",
|
160 |
+
"dataset_id": "sw",
|
161 |
+
"stopwords_id": "sw",
|
162 |
+
"flagged_words_id": None,
|
163 |
+
"fasttext_id": "sw",
|
164 |
+
"sentencepiece_id": "sw",
|
165 |
+
"kenlm_id": "sw",
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"lang": "Tamil",
|
169 |
+
"dataset_id": "ta",
|
170 |
+
"stopwords_id": None,
|
171 |
+
"flagged_words_id": "ta",
|
172 |
+
"fasttext_id": "ta",
|
173 |
+
"sentencepiece_id": "ta",
|
174 |
+
"kenlm_id": "ta",
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"lang": "Telugu",
|
178 |
+
"dataset_id": "te",
|
179 |
+
"stopwords_id": None,
|
180 |
+
"flagged_words_id": "te",
|
181 |
+
"fasttext_id": "te",
|
182 |
+
"sentencepiece_id": "te",
|
183 |
+
"kenlm_id": "te",
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"lang": "Urdu",
|
187 |
+
"dataset_id": "ur",
|
188 |
+
"stopwords_id": "ur",
|
189 |
+
"flagged_words_id": None,
|
190 |
+
"fasttext_id": "ur",
|
191 |
+
"sentencepiece_id": "ur",
|
192 |
+
"kenlm_id": "ur",
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"lang": "Vietnamese",
|
196 |
+
"dataset_id": "vi",
|
197 |
+
"stopwords_id": "vi",
|
198 |
+
"flagged_words_id": "vi",
|
199 |
+
"fasttext_id": "vi",
|
200 |
+
"sentencepiece_id": "vi",
|
201 |
+
"kenlm_id": "vi",
|
202 |
+
},
|
203 |
+
{
|
204 |
+
"lang": "Yoruba",
|
205 |
+
"dataset_id": "yo",
|
206 |
+
"stopwords_id": "yo",
|
207 |
+
"flagged_words_id": None,
|
208 |
+
"fasttext_id": "yo",
|
209 |
+
"sentencepiece_id": "yo",
|
210 |
+
"kenlm_id": "yo",
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"lang": "Chinese",
|
214 |
+
"dataset_id": "zh",
|
215 |
+
"stopwords_id": "zh",
|
216 |
+
"flagged_words_id": "zh",
|
217 |
+
"fasttext_id": "zh",
|
218 |
+
"sentencepiece_id": "zh",
|
219 |
+
"kenlm_id": "zh",
|
220 |
+
},
|
221 |
+
]
|
222 |
+
langs_id = pd.DataFrame(langs_id)
|
lid.176.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e69ec5451bc261cc7844e49e4792a85d7f09c06789ec800fc4a44aec362764e
|
3 |
+
size 131266198
|
normalization.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from typing import Dict
|
3 |
+
|
4 |
+
|
5 |
+
non_printing_characters_re = re.compile(
|
6 |
+
f"[{''.join(map(chr, list(range(0,32)) + list(range(127,160))))}]"
|
7 |
+
)
|
8 |
+
|
9 |
+
digits_re: re.Pattern = re.compile(r"\d")
|
10 |
+
|
11 |
+
unicode_punctuation: Dict[str, str] = {
|
12 |
+
",": ",",
|
13 |
+
"。": ".",
|
14 |
+
"、": ",",
|
15 |
+
"„": '"',
|
16 |
+
"”": '"',
|
17 |
+
"“": '"',
|
18 |
+
"«": '"',
|
19 |
+
"»": '"',
|
20 |
+
"1": '"',
|
21 |
+
"」": '"',
|
22 |
+
"「": '"',
|
23 |
+
"《": '"',
|
24 |
+
"》": '"',
|
25 |
+
"´": "'",
|
26 |
+
"∶": ":",
|
27 |
+
":": ":",
|
28 |
+
"?": "?",
|
29 |
+
"!": "!",
|
30 |
+
"(": "(",
|
31 |
+
")": ")",
|
32 |
+
";": ";",
|
33 |
+
"–": "-",
|
34 |
+
"—": " - ",
|
35 |
+
".": ". ",
|
36 |
+
"~": "~",
|
37 |
+
"’": "'",
|
38 |
+
"…": "...",
|
39 |
+
"━": "-",
|
40 |
+
"〈": "<",
|
41 |
+
"〉": ">",
|
42 |
+
"【": "[",
|
43 |
+
"】": "]",
|
44 |
+
"%": "%",
|
45 |
+
"►": "-",
|
46 |
+
}
|
47 |
+
|
48 |
+
normalization = {
|
49 |
+
"non_printing_characters_re": non_printing_characters_re,
|
50 |
+
"digits_re": digits_re,
|
51 |
+
"unicode_punctuation": unicode_punctuation,
|
52 |
+
}
|
parameters_filtering.py
ADDED
@@ -0,0 +1,895 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import string
|
2 |
+
import emoji
|
3 |
+
|
4 |
+
|
5 |
+
main_special_characters = string.punctuation + string.digits + string.whitespace
|
6 |
+
other_special_characters = (
|
7 |
+
" ’“”–ー一▬…✦�£•€«»°·═"
|
8 |
+
"×士^˘⇓↓↑←→()§″′´¿−±∈¢ø‚„½¼¾¹²³―⁃,ˌ¸‹›ʺˈʻ¦‐⠀‰
‑≤≥‖"
|
9 |
+
"◆●■►▼▲▴∆▻¡★☆✱ːº。¯˜¥ɪ≈†上ン:∼⁄・♡✓⊕․.⋅÷1‟;،、¨ाাी्े◦˚"
|
10 |
+
"゜ʼ≖ʼ¤ッツシ℃√!【】‿∞➤~πه۩☛₨➩☻๑٪♥ıॽ《‘©﴿٬?▷Г♫∟™ª₪®「—❖"
|
11 |
+
"」﴾》"
|
12 |
+
)
|
13 |
+
emoji = list(emoji.UNICODE_EMOJI["en"].keys())
|
14 |
+
|
15 |
+
special_characters_default = set(main_special_characters + other_special_characters)
|
16 |
+
special_characters_default.update(emoji)
|
17 |
+
|
18 |
+
|
19 |
+
parameters_filtering_default = {
|
20 |
+
"cond_uniform_whitespace": True,
|
21 |
+
"cond_replace_unicode_punctuation": False,
|
22 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
23 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
24 |
+
"cond_remove_long_words": False,
|
25 |
+
"length_word_max_cutoff": 50,
|
26 |
+
"cond_check_number_words": True,
|
27 |
+
"tokenization": False,
|
28 |
+
"strip_characters": special_characters_default,
|
29 |
+
"number_words_min_cutoff": 1,
|
30 |
+
"number_words_max_cutoff": 100000,
|
31 |
+
"cond_check_character_repetition_removal": True,
|
32 |
+
"character_repetition_length": 10,
|
33 |
+
"character_repetition_max_cutoff": 0.106,
|
34 |
+
"cond_check_word_repetition_removal": True,
|
35 |
+
"word_repetition_length": 5,
|
36 |
+
"word_repetition_max_cutoff": 0.19,
|
37 |
+
"cond_check_special_characters": True,
|
38 |
+
"special_characters": special_characters_default,
|
39 |
+
"special_characters_max_cutoff": 0.4,
|
40 |
+
"cond_words_augmentation": False,
|
41 |
+
"words_augmentation_group_sizes": [],
|
42 |
+
"words_augmentation_join_char": "",
|
43 |
+
"cond_check_stopwords": False,
|
44 |
+
"stopwords_min_cutoff": 0,
|
45 |
+
"cond_check_flagged_words": False,
|
46 |
+
"flagged_words_max_cutoff": 0.2,
|
47 |
+
"cond_check_lang_id": True,
|
48 |
+
"lang_id_min_cutoff": 0.70,
|
49 |
+
"cond_check_perplexity": False,
|
50 |
+
"perplexity_max_cutoff": 3000000,
|
51 |
+
}
|
52 |
+
|
53 |
+
parameters_filtering_af = {
|
54 |
+
"cond_uniform_whitespace": True,
|
55 |
+
"cond_replace_unicode_punctuation": False,
|
56 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
57 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
58 |
+
"cond_remove_long_words": True,
|
59 |
+
"length_word_max_cutoff": 25,
|
60 |
+
"cond_check_number_words": True,
|
61 |
+
"tokenization": False,
|
62 |
+
"strip_characters": special_characters_default,
|
63 |
+
"number_words_min_cutoff": 1,
|
64 |
+
"number_words_max_cutoff": 100000,
|
65 |
+
"cond_check_character_repetition_removal": True,
|
66 |
+
"character_repetition_length": 10,
|
67 |
+
"character_repetition_max_cutoff": 0.106,
|
68 |
+
"cond_check_word_repetition_removal": True,
|
69 |
+
"word_repetition_length": 5,
|
70 |
+
"word_repetition_max_cutoff": 0.19,
|
71 |
+
"cond_check_special_characters": True,
|
72 |
+
"special_characters": special_characters_default,
|
73 |
+
"special_characters_max_cutoff": 0.3,
|
74 |
+
"cond_words_augmentation": False,
|
75 |
+
"words_augmentation_group_sizes": [],
|
76 |
+
"words_augmentation_join_char": "",
|
77 |
+
"cond_check_stopwords": True,
|
78 |
+
"stopwords_min_cutoff": 0,
|
79 |
+
"cond_check_flagged_words": False,
|
80 |
+
"flagged_words_max_cutoff": 0.2,
|
81 |
+
"cond_check_lang_id": True,
|
82 |
+
"lang_id_min_cutoff": 0.6,
|
83 |
+
"cond_check_perplexity": True,
|
84 |
+
"perplexity_max_cutoff": 3000000,
|
85 |
+
}
|
86 |
+
|
87 |
+
parameters_filtering_ar = {
|
88 |
+
"cond_uniform_whitespace": True,
|
89 |
+
"cond_replace_unicode_punctuation": False,
|
90 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
91 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
92 |
+
"cond_remove_long_words": True,
|
93 |
+
"length_word_max_cutoff": 25,
|
94 |
+
"cond_check_number_words": True,
|
95 |
+
"tokenization": False,
|
96 |
+
"strip_characters": special_characters_default,
|
97 |
+
"number_words_min_cutoff": 1,
|
98 |
+
"number_words_max_cutoff": 100000,
|
99 |
+
"cond_check_character_repetition_removal": True,
|
100 |
+
"character_repetition_length": 10,
|
101 |
+
"character_repetition_max_cutoff": 0.106,
|
102 |
+
"cond_check_word_repetition_removal": True,
|
103 |
+
"word_repetition_length": 5,
|
104 |
+
"word_repetition_max_cutoff": 0.19,
|
105 |
+
"cond_check_special_characters": True,
|
106 |
+
"special_characters": special_characters_default,
|
107 |
+
"special_characters_max_cutoff": 0.45,
|
108 |
+
"cond_words_augmentation": False,
|
109 |
+
"words_augmentation_group_sizes": [],
|
110 |
+
"words_augmentation_join_char": "",
|
111 |
+
"cond_check_stopwords": True,
|
112 |
+
"stopwords_min_cutoff": 0,
|
113 |
+
"cond_check_flagged_words": False,
|
114 |
+
"flagged_words_max_cutoff": 0.2,
|
115 |
+
"cond_check_lang_id": True,
|
116 |
+
"lang_id_min_cutoff": 0.75,
|
117 |
+
"cond_check_perplexity": True,
|
118 |
+
"perplexity_max_cutoff": 1000000,
|
119 |
+
}
|
120 |
+
|
121 |
+
parameters_filtering_arz = {
|
122 |
+
"cond_uniform_whitespace": True,
|
123 |
+
"cond_replace_unicode_punctuation": False,
|
124 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
125 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
126 |
+
"cond_remove_long_words": True,
|
127 |
+
"length_word_max_cutoff": 25,
|
128 |
+
"cond_check_number_words": True,
|
129 |
+
"tokenization": False,
|
130 |
+
"strip_characters": special_characters_default,
|
131 |
+
"number_words_min_cutoff": 1,
|
132 |
+
"number_words_max_cutoff": 100000,
|
133 |
+
"cond_check_character_repetition_removal": True,
|
134 |
+
"character_repetition_length": 10,
|
135 |
+
"character_repetition_max_cutoff": 0.106,
|
136 |
+
"cond_check_word_repetition_removal": True,
|
137 |
+
"word_repetition_length": 5,
|
138 |
+
"word_repetition_max_cutoff": 0.19,
|
139 |
+
"cond_check_special_characters": True,
|
140 |
+
"special_characters": special_characters_default,
|
141 |
+
"special_characters_max_cutoff": 0.5,
|
142 |
+
"cond_words_augmentation": False,
|
143 |
+
"words_augmentation_group_sizes": [],
|
144 |
+
"words_augmentation_join_char": "",
|
145 |
+
"cond_check_stopwords": True,
|
146 |
+
"stopwords_min_cutoff": 0,
|
147 |
+
"cond_check_flagged_words": False,
|
148 |
+
"flagged_words_max_cutoff": 0.2,
|
149 |
+
"cond_check_lang_id": True,
|
150 |
+
"lang_id_min_cutoff": 0.75,
|
151 |
+
"cond_check_perplexity": False,
|
152 |
+
"perplexity_max_cutoff": 3000000,
|
153 |
+
}
|
154 |
+
|
155 |
+
parameters_filtering_as = {
|
156 |
+
"cond_uniform_whitespace": True,
|
157 |
+
"cond_replace_unicode_punctuation": False,
|
158 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
159 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
160 |
+
"cond_remove_long_words": True,
|
161 |
+
"length_word_max_cutoff": 25,
|
162 |
+
"cond_check_number_words": True,
|
163 |
+
"tokenization": False,
|
164 |
+
"strip_characters": special_characters_default,
|
165 |
+
"number_words_min_cutoff": 1,
|
166 |
+
"number_words_max_cutoff": 100000,
|
167 |
+
"cond_check_character_repetition_removal": True,
|
168 |
+
"character_repetition_length": 10,
|
169 |
+
"character_repetition_max_cutoff": 0.106,
|
170 |
+
"cond_check_word_repetition_removal": True,
|
171 |
+
"word_repetition_length": 5,
|
172 |
+
"word_repetition_max_cutoff": 0.19,
|
173 |
+
"cond_check_special_characters": True,
|
174 |
+
"special_characters": special_characters_default,
|
175 |
+
"special_characters_max_cutoff": 0.25,
|
176 |
+
"cond_words_augmentation": False,
|
177 |
+
"words_augmentation_group_sizes": [],
|
178 |
+
"words_augmentation_join_char": "",
|
179 |
+
"cond_check_stopwords": True,
|
180 |
+
"stopwords_min_cutoff": 0,
|
181 |
+
"cond_check_flagged_words": False,
|
182 |
+
"flagged_words_max_cutoff": 0.2,
|
183 |
+
"cond_check_lang_id": True,
|
184 |
+
"lang_id_min_cutoff": 0.75,
|
185 |
+
"cond_check_perplexity": False,
|
186 |
+
"perplexity_max_cutoff": 3000000,
|
187 |
+
}
|
188 |
+
|
189 |
+
parameters_filtering_bn = {
|
190 |
+
"cond_uniform_whitespace": True,
|
191 |
+
"cond_replace_unicode_punctuation": False,
|
192 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
193 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
194 |
+
"cond_remove_long_words": True,
|
195 |
+
"length_word_max_cutoff": 30,
|
196 |
+
"cond_check_number_words": True,
|
197 |
+
"tokenization": False,
|
198 |
+
"strip_characters": special_characters_default,
|
199 |
+
"number_words_min_cutoff": 1,
|
200 |
+
"number_words_max_cutoff": 100000,
|
201 |
+
"cond_check_character_repetition_removal": True,
|
202 |
+
"character_repetition_length": 10,
|
203 |
+
"character_repetition_max_cutoff": 0.106,
|
204 |
+
"cond_check_word_repetition_removal": True,
|
205 |
+
"word_repetition_length": 5,
|
206 |
+
"word_repetition_max_cutoff": 0.19,
|
207 |
+
"cond_check_special_characters": True,
|
208 |
+
"special_characters": special_characters_default,
|
209 |
+
"special_characters_max_cutoff": 0.275,
|
210 |
+
"cond_words_augmentation": False,
|
211 |
+
"words_augmentation_group_sizes": [],
|
212 |
+
"words_augmentation_join_char": "",
|
213 |
+
"cond_check_stopwords": True,
|
214 |
+
"stopwords_min_cutoff": 0.05,
|
215 |
+
"cond_check_flagged_words": False,
|
216 |
+
"flagged_words_max_cutoff": 0.2,
|
217 |
+
"cond_check_lang_id": True,
|
218 |
+
"lang_id_min_cutoff": 0.75,
|
219 |
+
"cond_check_perplexity": False,
|
220 |
+
"perplexity_max_cutoff": 575000,
|
221 |
+
}
|
222 |
+
|
223 |
+
parameters_filtering_ca = {
|
224 |
+
"cond_uniform_whitespace": True,
|
225 |
+
"cond_replace_unicode_punctuation": False,
|
226 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
227 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
228 |
+
"cond_remove_long_words": True,
|
229 |
+
"length_word_max_cutoff": 30,
|
230 |
+
"cond_check_number_words": True,
|
231 |
+
"tokenization": False,
|
232 |
+
"strip_characters": special_characters_default,
|
233 |
+
"number_words_min_cutoff": 1,
|
234 |
+
"number_words_max_cutoff": 100000,
|
235 |
+
"cond_check_character_repetition_removal": True,
|
236 |
+
"character_repetition_length": 10,
|
237 |
+
"character_repetition_max_cutoff": 0.106,
|
238 |
+
"cond_check_word_repetition_removal": True,
|
239 |
+
"word_repetition_length": 5,
|
240 |
+
"word_repetition_max_cutoff": 0.19,
|
241 |
+
"cond_check_special_characters": True,
|
242 |
+
"special_characters": special_characters_default,
|
243 |
+
"special_characters_max_cutoff": 0.35,
|
244 |
+
"cond_words_augmentation": False,
|
245 |
+
"words_augmentation_group_sizes": [],
|
246 |
+
"words_augmentation_join_char": "",
|
247 |
+
"cond_check_stopwords": True,
|
248 |
+
"stopwords_min_cutoff": 0,
|
249 |
+
"cond_check_flagged_words": False,
|
250 |
+
"flagged_words_max_cutoff": 0.2,
|
251 |
+
"cond_check_lang_id": True,
|
252 |
+
"lang_id_min_cutoff": 0.75,
|
253 |
+
"cond_check_perplexity": True,
|
254 |
+
"perplexity_max_cutoff": 1750000,
|
255 |
+
}
|
256 |
+
|
257 |
+
parameters_filtering_en = {
|
258 |
+
"cond_uniform_whitespace": True,
|
259 |
+
"cond_replace_unicode_punctuation": False,
|
260 |
+
"cond_remove_words_with_incorrect_substrings": True,
|
261 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
262 |
+
"cond_remove_long_words": True,
|
263 |
+
"length_word_max_cutoff": 25,
|
264 |
+
"cond_check_number_words": True,
|
265 |
+
"tokenization": False,
|
266 |
+
"strip_characters": special_characters_default,
|
267 |
+
"number_words_min_cutoff": 20,
|
268 |
+
"number_words_max_cutoff": 100000,
|
269 |
+
"cond_check_character_repetition_removal": True,
|
270 |
+
"character_repetition_length": 10,
|
271 |
+
"character_repetition_max_cutoff": 0.106,
|
272 |
+
"cond_check_word_repetition_removal": True,
|
273 |
+
"word_repetition_length": 5,
|
274 |
+
"word_repetition_max_cutoff": 0.19,
|
275 |
+
"cond_check_special_characters": True,
|
276 |
+
"special_characters": special_characters_default,
|
277 |
+
"special_characters_max_cutoff": 0.4,
|
278 |
+
"cond_words_augmentation": False,
|
279 |
+
"words_augmentation_group_sizes": [],
|
280 |
+
"words_augmentation_join_char": "",
|
281 |
+
"cond_check_stopwords": True,
|
282 |
+
"stopwords_min_cutoff": 0.3,
|
283 |
+
"cond_check_flagged_words": True,
|
284 |
+
"flagged_words_max_cutoff": 0.045,
|
285 |
+
"cond_check_lang_id": True,
|
286 |
+
"lang_id_min_cutoff": 0.80,
|
287 |
+
"cond_check_perplexity": True,
|
288 |
+
"perplexity_max_cutoff": 2500,
|
289 |
+
}
|
290 |
+
|
291 |
+
parameters_filtering_es = {
|
292 |
+
"cond_uniform_whitespace": True,
|
293 |
+
"cond_replace_unicode_punctuation": False,
|
294 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
295 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
296 |
+
"cond_remove_long_words": True,
|
297 |
+
"length_word_max_cutoff": 30,
|
298 |
+
"cond_check_number_words": True,
|
299 |
+
"tokenization": False,
|
300 |
+
"strip_characters": special_characters_default,
|
301 |
+
"number_words_min_cutoff": 1,
|
302 |
+
"number_words_max_cutoff": 100000,
|
303 |
+
"cond_check_character_repetition_removal": True,
|
304 |
+
"character_repetition_length": 10,
|
305 |
+
"character_repetition_max_cutoff": 0.106,
|
306 |
+
"cond_check_word_repetition_removal": True,
|
307 |
+
"word_repetition_length": 5,
|
308 |
+
"word_repetition_max_cutoff": 0.19,
|
309 |
+
"cond_check_special_characters": True,
|
310 |
+
"special_characters": special_characters_default,
|
311 |
+
"special_characters_max_cutoff": 0.3,
|
312 |
+
"cond_words_augmentation": False,
|
313 |
+
"words_augmentation_group_sizes": [],
|
314 |
+
"words_augmentation_join_char": "",
|
315 |
+
"cond_check_stopwords": True,
|
316 |
+
"stopwords_min_cutoff": 0.2,
|
317 |
+
"cond_check_flagged_words": False,
|
318 |
+
"flagged_words_max_cutoff": 0.2,
|
319 |
+
"cond_check_lang_id": True,
|
320 |
+
"lang_id_min_cutoff": 0.75,
|
321 |
+
"cond_check_perplexity": True,
|
322 |
+
"perplexity_max_cutoff": 2500000,
|
323 |
+
}
|
324 |
+
|
325 |
+
parameters_filtering_eu = {
|
326 |
+
"cond_uniform_whitespace": True,
|
327 |
+
"cond_replace_unicode_punctuation": False,
|
328 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
329 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
330 |
+
"cond_remove_long_words": True,
|
331 |
+
"length_word_max_cutoff": 35,
|
332 |
+
"cond_check_number_words": True,
|
333 |
+
"tokenization": False,
|
334 |
+
"strip_characters": special_characters_default,
|
335 |
+
"number_words_min_cutoff": 1,
|
336 |
+
"number_words_max_cutoff": 100000,
|
337 |
+
"cond_check_character_repetition_removal": True,
|
338 |
+
"character_repetition_length": 10,
|
339 |
+
"character_repetition_max_cutoff": 0.106,
|
340 |
+
"cond_check_word_repetition_removal": True,
|
341 |
+
"word_repetition_length": 5,
|
342 |
+
"word_repetition_max_cutoff": 0.19,
|
343 |
+
"cond_check_special_characters": True,
|
344 |
+
"special_characters": special_characters_default,
|
345 |
+
"special_characters_max_cutoff": 0.3,
|
346 |
+
"cond_words_augmentation": False,
|
347 |
+
"words_augmentation_group_sizes": [],
|
348 |
+
"words_augmentation_join_char": "",
|
349 |
+
"cond_check_stopwords": True,
|
350 |
+
"stopwords_min_cutoff": 0,
|
351 |
+
"cond_check_flagged_words": False,
|
352 |
+
"flagged_words_max_cutoff": 0.2,
|
353 |
+
"cond_check_lang_id": True,
|
354 |
+
"lang_id_min_cutoff": 0.75,
|
355 |
+
"cond_check_perplexity": False,
|
356 |
+
"perplexity_max_cutoff": 3000000,
|
357 |
+
}
|
358 |
+
|
359 |
+
parameters_filtering_fr = {
|
360 |
+
"cond_uniform_whitespace": True,
|
361 |
+
"cond_replace_unicode_punctuation": False,
|
362 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
363 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
364 |
+
"cond_remove_long_words": True,
|
365 |
+
"length_word_max_cutoff": 30,
|
366 |
+
"cond_check_number_words": True,
|
367 |
+
"tokenization": False,
|
368 |
+
"strip_characters": special_characters_default,
|
369 |
+
"number_words_min_cutoff": 1,
|
370 |
+
"number_words_max_cutoff": 100000,
|
371 |
+
"cond_check_character_repetition_removal": True,
|
372 |
+
"character_repetition_length": 10,
|
373 |
+
"character_repetition_max_cutoff": 0.106,
|
374 |
+
"cond_check_word_repetition_removal": True,
|
375 |
+
"word_repetition_length": 5,
|
376 |
+
"word_repetition_max_cutoff": 0.19,
|
377 |
+
"cond_check_special_characters": True,
|
378 |
+
"special_characters": special_characters_default,
|
379 |
+
"special_characters_max_cutoff": 0.35,
|
380 |
+
"cond_words_augmentation": False,
|
381 |
+
"words_augmentation_group_sizes": [],
|
382 |
+
"words_augmentation_join_char": "",
|
383 |
+
"cond_check_stopwords": True,
|
384 |
+
"stopwords_min_cutoff": 0.15,
|
385 |
+
"cond_check_flagged_words": False,
|
386 |
+
"flagged_words_max_cutoff": 0.2,
|
387 |
+
"cond_check_lang_id": True,
|
388 |
+
"lang_id_min_cutoff": 0.75,
|
389 |
+
"cond_check_perplexity": True,
|
390 |
+
"perplexity_max_cutoff": 3000000,
|
391 |
+
}
|
392 |
+
|
393 |
+
parameters_filtering_gu = {
|
394 |
+
"cond_uniform_whitespace": True,
|
395 |
+
"cond_replace_unicode_punctuation": False,
|
396 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
397 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
398 |
+
"cond_remove_long_words": True,
|
399 |
+
"length_word_max_cutoff": 30,
|
400 |
+
"cond_check_number_words": True,
|
401 |
+
"tokenization": False,
|
402 |
+
"strip_characters": special_characters_default,
|
403 |
+
"number_words_min_cutoff": 1,
|
404 |
+
"number_words_max_cutoff": 100000,
|
405 |
+
"cond_check_character_repetition_removal": True,
|
406 |
+
"character_repetition_length": 10,
|
407 |
+
"character_repetition_max_cutoff": 0.106,
|
408 |
+
"cond_check_word_repetition_removal": True,
|
409 |
+
"word_repetition_length": 5,
|
410 |
+
"word_repetition_max_cutoff": 0.19,
|
411 |
+
"cond_check_special_characters": True,
|
412 |
+
"special_characters": special_characters_default,
|
413 |
+
"special_characters_max_cutoff": 0.3,
|
414 |
+
"cond_words_augmentation": False,
|
415 |
+
"words_augmentation_group_sizes": [],
|
416 |
+
"words_augmentation_join_char": "",
|
417 |
+
"cond_check_stopwords": True,
|
418 |
+
"stopwords_min_cutoff": 0,
|
419 |
+
"cond_check_flagged_words": False,
|
420 |
+
"flagged_words_max_cutoff": 0.2,
|
421 |
+
"cond_check_lang_id": True,
|
422 |
+
"lang_id_min_cutoff": 0.75,
|
423 |
+
"cond_check_perplexity": True,
|
424 |
+
"perplexity_max_cutoff": 250000,
|
425 |
+
}
|
426 |
+
|
427 |
+
parameters_filtering_hi = {
|
428 |
+
"cond_uniform_whitespace": True,
|
429 |
+
"cond_replace_unicode_punctuation": False,
|
430 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
431 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
432 |
+
"cond_remove_long_words": True,
|
433 |
+
"length_word_max_cutoff": 25,
|
434 |
+
"cond_check_number_words": True,
|
435 |
+
"tokenization": False,
|
436 |
+
"strip_characters": special_characters_default,
|
437 |
+
"number_words_min_cutoff": 1,
|
438 |
+
"number_words_max_cutoff": 100000,
|
439 |
+
"cond_check_character_repetition_removal": True,
|
440 |
+
"character_repetition_length": 10,
|
441 |
+
"character_repetition_max_cutoff": 0.106,
|
442 |
+
"cond_check_word_repetition_removal": True,
|
443 |
+
"word_repetition_length": 5,
|
444 |
+
"word_repetition_max_cutoff": 0.19,
|
445 |
+
"cond_check_special_characters": True,
|
446 |
+
"special_characters": special_characters_default,
|
447 |
+
"special_characters_max_cutoff": 0.35,
|
448 |
+
"cond_words_augmentation": False,
|
449 |
+
"words_augmentation_group_sizes": [],
|
450 |
+
"words_augmentation_join_char": "",
|
451 |
+
"cond_check_stopwords": True,
|
452 |
+
"stopwords_min_cutoff": 0,
|
453 |
+
"cond_check_flagged_words": False,
|
454 |
+
"flagged_words_max_cutoff": 0.2,
|
455 |
+
"cond_check_lang_id": True,
|
456 |
+
"lang_id_min_cutoff": 0.75,
|
457 |
+
"cond_check_perplexity": True,
|
458 |
+
"perplexity_max_cutoff": 600000,
|
459 |
+
}
|
460 |
+
|
461 |
+
parameters_filtering_id = {
|
462 |
+
"cond_uniform_whitespace": True,
|
463 |
+
"cond_replace_unicode_punctuation": False,
|
464 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
465 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
466 |
+
"cond_remove_long_words": True,
|
467 |
+
"length_word_max_cutoff": 30,
|
468 |
+
"cond_check_number_words": True,
|
469 |
+
"tokenization": False,
|
470 |
+
"strip_characters": special_characters_default,
|
471 |
+
"number_words_min_cutoff": 1,
|
472 |
+
"number_words_max_cutoff": 100000,
|
473 |
+
"cond_check_character_repetition_removal": True,
|
474 |
+
"character_repetition_length": 10,
|
475 |
+
"character_repetition_max_cutoff": 0.106,
|
476 |
+
"cond_check_word_repetition_removal": True,
|
477 |
+
"word_repetition_length": 5,
|
478 |
+
"word_repetition_max_cutoff": 0.19,
|
479 |
+
"cond_check_special_characters": True,
|
480 |
+
"special_characters": special_characters_default,
|
481 |
+
"special_characters_max_cutoff": 0.25,
|
482 |
+
"cond_words_augmentation": False,
|
483 |
+
"words_augmentation_group_sizes": [],
|
484 |
+
"words_augmentation_join_char": "",
|
485 |
+
"cond_check_stopwords": True,
|
486 |
+
"stopwords_min_cutoff": 0.25,
|
487 |
+
"cond_check_flagged_words": False,
|
488 |
+
"flagged_words_max_cutoff": 0.2,
|
489 |
+
"cond_check_lang_id": True,
|
490 |
+
"lang_id_min_cutoff": 0.75,
|
491 |
+
"cond_check_perplexity": True,
|
492 |
+
"perplexity_max_cutoff": 2500000,
|
493 |
+
}
|
494 |
+
|
495 |
+
parameters_filtering_kn = {
|
496 |
+
"cond_uniform_whitespace": True,
|
497 |
+
"cond_replace_unicode_punctuation": False,
|
498 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
499 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
500 |
+
"cond_remove_long_words": True,
|
501 |
+
"length_word_max_cutoff": 50,
|
502 |
+
"cond_check_number_words": True,
|
503 |
+
"tokenization": False,
|
504 |
+
"strip_characters": special_characters_default,
|
505 |
+
"number_words_min_cutoff": 1,
|
506 |
+
"number_words_max_cutoff": 100000,
|
507 |
+
"cond_check_character_repetition_removal": True,
|
508 |
+
"character_repetition_length": 10,
|
509 |
+
"character_repetition_max_cutoff": 0.106,
|
510 |
+
"cond_check_word_repetition_removal": True,
|
511 |
+
"word_repetition_length": 5,
|
512 |
+
"word_repetition_max_cutoff": 0.19,
|
513 |
+
"cond_check_special_characters": True,
|
514 |
+
"special_characters": special_characters_default,
|
515 |
+
"special_characters_max_cutoff": 0.25,
|
516 |
+
"cond_words_augmentation": False,
|
517 |
+
"words_augmentation_group_sizes": [],
|
518 |
+
"words_augmentation_join_char": "",
|
519 |
+
"cond_check_stopwords": True,
|
520 |
+
"stopwords_min_cutoff": 0,
|
521 |
+
"cond_check_flagged_words": False,
|
522 |
+
"flagged_words_max_cutoff": 0.2,
|
523 |
+
"cond_check_lang_id": True,
|
524 |
+
"lang_id_min_cutoff": 0.75,
|
525 |
+
"cond_check_perplexity": True,
|
526 |
+
"perplexity_max_cutoff": 400000,
|
527 |
+
}
|
528 |
+
|
529 |
+
parameters_filtering_ml = {
|
530 |
+
"cond_uniform_whitespace": True,
|
531 |
+
"cond_replace_unicode_punctuation": False,
|
532 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
533 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
534 |
+
"cond_remove_long_words": True,
|
535 |
+
"length_word_max_cutoff": 50,
|
536 |
+
"cond_check_number_words": True,
|
537 |
+
"tokenization": False,
|
538 |
+
"strip_characters": special_characters_default,
|
539 |
+
"number_words_min_cutoff": 1,
|
540 |
+
"number_words_max_cutoff": 100000,
|
541 |
+
"cond_check_character_repetition_removal": True,
|
542 |
+
"character_repetition_length": 10,
|
543 |
+
"character_repetition_max_cutoff": 0.106,
|
544 |
+
"cond_check_word_repetition_removal": True,
|
545 |
+
"word_repetition_length": 5,
|
546 |
+
"word_repetition_max_cutoff": 0.19,
|
547 |
+
"cond_check_special_characters": True,
|
548 |
+
"special_characters": special_characters_default,
|
549 |
+
"special_characters_max_cutoff": 0.2,
|
550 |
+
"cond_words_augmentation": False,
|
551 |
+
"words_augmentation_group_sizes": [],
|
552 |
+
"words_augmentation_join_char": "",
|
553 |
+
"cond_check_stopwords": True,
|
554 |
+
"stopwords_min_cutoff": 0,
|
555 |
+
"cond_check_flagged_words": False,
|
556 |
+
"flagged_words_max_cutoff": 0.2,
|
557 |
+
"cond_check_lang_id": True,
|
558 |
+
"lang_id_min_cutoff": 0.75,
|
559 |
+
"cond_check_perplexity": True,
|
560 |
+
"perplexity_max_cutoff": 1600000,
|
561 |
+
}
|
562 |
+
|
563 |
+
parameters_filtering_mr = {
|
564 |
+
"cond_uniform_whitespace": True,
|
565 |
+
"cond_replace_unicode_punctuation": False,
|
566 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
567 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
568 |
+
"cond_remove_long_words": True,
|
569 |
+
"length_word_max_cutoff": 30,
|
570 |
+
"cond_check_number_words": True,
|
571 |
+
"tokenization": False,
|
572 |
+
"strip_characters": special_characters_default,
|
573 |
+
"number_words_min_cutoff": 1,
|
574 |
+
"number_words_max_cutoff": 100000,
|
575 |
+
"cond_check_character_repetition_removal": True,
|
576 |
+
"character_repetition_length": 10,
|
577 |
+
"character_repetition_max_cutoff": 0.106,
|
578 |
+
"cond_check_word_repetition_removal": True,
|
579 |
+
"word_repetition_length": 5,
|
580 |
+
"word_repetition_max_cutoff": 0.19,
|
581 |
+
"cond_check_special_characters": True,
|
582 |
+
"special_characters": special_characters_default,
|
583 |
+
"special_characters_max_cutoff": 0.25,
|
584 |
+
"cond_words_augmentation": False,
|
585 |
+
"words_augmentation_group_sizes": [],
|
586 |
+
"words_augmentation_join_char": "",
|
587 |
+
"cond_check_stopwords": True,
|
588 |
+
"stopwords_min_cutoff": 0,
|
589 |
+
"cond_check_flagged_words": False,
|
590 |
+
"flagged_words_max_cutoff": 0.2,
|
591 |
+
"cond_check_lang_id": True,
|
592 |
+
"lang_id_min_cutoff": 0.75,
|
593 |
+
"cond_check_perplexity": True,
|
594 |
+
"perplexity_max_cutoff": 425000,
|
595 |
+
}
|
596 |
+
|
597 |
+
parameters_filtering_pt = {
|
598 |
+
"cond_uniform_whitespace": True,
|
599 |
+
"cond_replace_unicode_punctuation": False,
|
600 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
601 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
602 |
+
"cond_remove_long_words": True,
|
603 |
+
"length_word_max_cutoff": 30,
|
604 |
+
"cond_check_number_words": True,
|
605 |
+
"tokenization": False,
|
606 |
+
"strip_characters": special_characters_default,
|
607 |
+
"number_words_min_cutoff": 1,
|
608 |
+
"number_words_max_cutoff": 100000,
|
609 |
+
"cond_check_character_repetition_removal": True,
|
610 |
+
"character_repetition_length": 10,
|
611 |
+
"character_repetition_max_cutoff": 0.106,
|
612 |
+
"cond_check_word_repetition_removal": True,
|
613 |
+
"word_repetition_length": 5,
|
614 |
+
"word_repetition_max_cutoff": 0.19,
|
615 |
+
"cond_check_special_characters": True,
|
616 |
+
"special_characters": special_characters_default,
|
617 |
+
"special_characters_max_cutoff": 0.3,
|
618 |
+
"cond_words_augmentation": False,
|
619 |
+
"words_augmentation_group_sizes": [],
|
620 |
+
"words_augmentation_join_char": "",
|
621 |
+
"cond_check_stopwords": True,
|
622 |
+
"stopwords_min_cutoff": 0.15,
|
623 |
+
"cond_check_flagged_words": False,
|
624 |
+
"flagged_words_max_cutoff": 0.2,
|
625 |
+
"cond_check_lang_id": True,
|
626 |
+
"lang_id_min_cutoff": 0.75,
|
627 |
+
"cond_check_perplexity": True,
|
628 |
+
"perplexity_max_cutoff": 3000000,
|
629 |
+
}
|
630 |
+
|
631 |
+
parameters_filtering_sw = {
|
632 |
+
"cond_uniform_whitespace": True,
|
633 |
+
"cond_replace_unicode_punctuation": False,
|
634 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
635 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
636 |
+
"cond_remove_long_words": True,
|
637 |
+
"length_word_max_cutoff": 30,
|
638 |
+
"cond_check_number_words": True,
|
639 |
+
"tokenization": False,
|
640 |
+
"strip_characters": special_characters_default,
|
641 |
+
"number_words_min_cutoff": 1,
|
642 |
+
"number_words_max_cutoff": 100000,
|
643 |
+
"cond_check_character_repetition_removal": True,
|
644 |
+
"character_repetition_length": 10,
|
645 |
+
"character_repetition_max_cutoff": 0.106,
|
646 |
+
"cond_check_word_repetition_removal": True,
|
647 |
+
"word_repetition_length": 5,
|
648 |
+
"word_repetition_max_cutoff": 0.19,
|
649 |
+
"cond_check_special_characters": True,
|
650 |
+
"special_characters": special_characters_default,
|
651 |
+
"special_characters_max_cutoff": 0.275,
|
652 |
+
"cond_words_augmentation": False,
|
653 |
+
"words_augmentation_group_sizes": [],
|
654 |
+
"words_augmentation_join_char": "",
|
655 |
+
"cond_check_stopwords": True,
|
656 |
+
"stopwords_min_cutoff": 0,
|
657 |
+
"cond_check_flagged_words": False,
|
658 |
+
"flagged_words_max_cutoff": 0.2,
|
659 |
+
"cond_check_lang_id": True,
|
660 |
+
"lang_id_min_cutoff": 0.75,
|
661 |
+
"cond_check_perplexity": False,
|
662 |
+
"perplexity_max_cutoff": 3000000,
|
663 |
+
}
|
664 |
+
|
665 |
+
parameters_filtering_ta = {
|
666 |
+
"cond_uniform_whitespace": True,
|
667 |
+
"cond_replace_unicode_punctuation": False,
|
668 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
669 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
670 |
+
"cond_remove_long_words": True,
|
671 |
+
"length_word_max_cutoff": 50,
|
672 |
+
"cond_check_number_words": True,
|
673 |
+
"tokenization": False,
|
674 |
+
"strip_characters": special_characters_default,
|
675 |
+
"number_words_min_cutoff": 1,
|
676 |
+
"number_words_max_cutoff": 100000,
|
677 |
+
"cond_check_character_repetition_removal": True,
|
678 |
+
"character_repetition_length": 10,
|
679 |
+
"character_repetition_max_cutoff": 0.106,
|
680 |
+
"cond_check_word_repetition_removal": True,
|
681 |
+
"word_repetition_length": 5,
|
682 |
+
"word_repetition_max_cutoff": 0.19,
|
683 |
+
"cond_check_special_characters": True,
|
684 |
+
"special_characters": special_characters_default,
|
685 |
+
"special_characters_max_cutoff": 0.25,
|
686 |
+
"cond_words_augmentation": False,
|
687 |
+
"words_augmentation_group_sizes": [],
|
688 |
+
"words_augmentation_join_char": "",
|
689 |
+
"cond_check_stopwords": True,
|
690 |
+
"stopwords_min_cutoff": 0,
|
691 |
+
"cond_check_flagged_words": False,
|
692 |
+
"flagged_words_max_cutoff": 0.2,
|
693 |
+
"cond_check_lang_id": True,
|
694 |
+
"lang_id_min_cutoff": 0.75,
|
695 |
+
"cond_check_perplexity": False,
|
696 |
+
"perplexity_max_cutoff": 3000000,
|
697 |
+
}
|
698 |
+
|
699 |
+
parameters_filtering_te = {
|
700 |
+
"cond_uniform_whitespace": True,
|
701 |
+
"cond_replace_unicode_punctuation": False,
|
702 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
703 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
704 |
+
"cond_remove_long_words": True,
|
705 |
+
"length_word_max_cutoff": 35,
|
706 |
+
"cond_check_number_words": True,
|
707 |
+
"tokenization": False,
|
708 |
+
"strip_characters": special_characters_default,
|
709 |
+
"number_words_min_cutoff": 1,
|
710 |
+
"number_words_max_cutoff": 100000,
|
711 |
+
"cond_check_character_repetition_removal": True,
|
712 |
+
"character_repetition_length": 10,
|
713 |
+
"character_repetition_max_cutoff": 0.106,
|
714 |
+
"cond_check_word_repetition_removal": True,
|
715 |
+
"word_repetition_length": 5,
|
716 |
+
"word_repetition_max_cutoff": 0.19,
|
717 |
+
"cond_check_special_characters": True,
|
718 |
+
"special_characters": special_characters_default,
|
719 |
+
"special_characters_max_cutoff": 0.25,
|
720 |
+
"cond_words_augmentation": False,
|
721 |
+
"words_augmentation_group_sizes": [],
|
722 |
+
"words_augmentation_join_char": "",
|
723 |
+
"cond_check_stopwords": True,
|
724 |
+
"stopwords_min_cutoff": 0,
|
725 |
+
"cond_check_flagged_words": False,
|
726 |
+
"flagged_words_max_cutoff": 0.2,
|
727 |
+
"cond_check_lang_id": True,
|
728 |
+
"lang_id_min_cutoff": 0.75,
|
729 |
+
"cond_check_perplexity": False,
|
730 |
+
"perplexity_max_cutoff": 3000000,
|
731 |
+
}
|
732 |
+
|
733 |
+
parameters_filtering_ur = {
|
734 |
+
"cond_uniform_whitespace": True,
|
735 |
+
"cond_replace_unicode_punctuation": False,
|
736 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
737 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
738 |
+
"cond_remove_long_words": True,
|
739 |
+
"length_word_max_cutoff": 30,
|
740 |
+
"cond_check_number_words": True,
|
741 |
+
"tokenization": False,
|
742 |
+
"strip_characters": special_characters_default,
|
743 |
+
"number_words_min_cutoff": 1,
|
744 |
+
"number_words_max_cutoff": 100000,
|
745 |
+
"cond_check_character_repetition_removal": True,
|
746 |
+
"character_repetition_length": 10,
|
747 |
+
"character_repetition_max_cutoff": 0.106,
|
748 |
+
"cond_check_word_repetition_removal": True,
|
749 |
+
"word_repetition_length": 5,
|
750 |
+
"word_repetition_max_cutoff": 0.19,
|
751 |
+
"cond_check_special_characters": True,
|
752 |
+
"special_characters": special_characters_default,
|
753 |
+
"special_characters_max_cutoff": 0.4,
|
754 |
+
"cond_words_augmentation": False,
|
755 |
+
"words_augmentation_group_sizes": [],
|
756 |
+
"words_augmentation_join_char": "",
|
757 |
+
"cond_check_stopwords": True,
|
758 |
+
"stopwords_min_cutoff": 0,
|
759 |
+
"cond_check_flagged_words": False,
|
760 |
+
"flagged_words_max_cutoff": 0.2,
|
761 |
+
"cond_check_lang_id": True,
|
762 |
+
"lang_id_min_cutoff": 0.75,
|
763 |
+
"cond_check_perplexity": False,
|
764 |
+
"perplexity_max_cutoff": 3000000,
|
765 |
+
}
|
766 |
+
|
767 |
+
parameters_filtering_vi = {
|
768 |
+
"cond_uniform_whitespace": True,
|
769 |
+
"cond_replace_unicode_punctuation": False,
|
770 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
771 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
772 |
+
"cond_remove_long_words": True,
|
773 |
+
"length_word_max_cutoff": 30,
|
774 |
+
"cond_check_number_words": True,
|
775 |
+
"tokenization": False,
|
776 |
+
"strip_characters": special_characters_default,
|
777 |
+
"number_words_min_cutoff": 1,
|
778 |
+
"number_words_max_cutoff": 100000,
|
779 |
+
"cond_check_character_repetition_removal": True,
|
780 |
+
"character_repetition_length": 10,
|
781 |
+
"character_repetition_max_cutoff": 0.106,
|
782 |
+
"cond_check_word_repetition_removal": True,
|
783 |
+
"word_repetition_length": 5,
|
784 |
+
"word_repetition_max_cutoff": 0.19,
|
785 |
+
"cond_check_special_characters": True,
|
786 |
+
"special_characters": special_characters_default,
|
787 |
+
"special_characters_max_cutoff": 0.35,
|
788 |
+
"cond_words_augmentation": True,
|
789 |
+
"words_augmentation_group_sizes": [2],
|
790 |
+
"words_augmentation_join_char": " ",
|
791 |
+
"cond_check_stopwords": True,
|
792 |
+
"stopwords_min_cutoff": 0,
|
793 |
+
"cond_check_flagged_words": False,
|
794 |
+
"flagged_words_max_cutoff": 0.2,
|
795 |
+
"cond_check_lang_id": True,
|
796 |
+
"lang_id_min_cutoff": 0.75,
|
797 |
+
"cond_check_perplexity": False,
|
798 |
+
"perplexity_max_cutoff": 3000000,
|
799 |
+
}
|
800 |
+
|
801 |
+
parameters_filtering_yo = {
|
802 |
+
"cond_uniform_whitespace": True,
|
803 |
+
"cond_replace_unicode_punctuation": False,
|
804 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
805 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
806 |
+
"cond_remove_long_words": True,
|
807 |
+
"length_word_max_cutoff": 30,
|
808 |
+
"cond_check_number_words": True,
|
809 |
+
"tokenization": False,
|
810 |
+
"strip_characters": special_characters_default,
|
811 |
+
"number_words_min_cutoff": 1,
|
812 |
+
"number_words_max_cutoff": 100000,
|
813 |
+
"cond_check_character_repetition_removal": True,
|
814 |
+
"character_repetition_length": 10,
|
815 |
+
"character_repetition_max_cutoff": 0.106,
|
816 |
+
"cond_check_word_repetition_removal": True,
|
817 |
+
"word_repetition_length": 5,
|
818 |
+
"word_repetition_max_cutoff": 0.19,
|
819 |
+
"cond_check_special_characters": True,
|
820 |
+
"special_characters": special_characters_default,
|
821 |
+
"special_characters_max_cutoff": 0.3,
|
822 |
+
"cond_words_augmentation": False,
|
823 |
+
"words_augmentation_group_sizes": [],
|
824 |
+
"words_augmentation_join_char": "",
|
825 |
+
"cond_check_stopwords": True,
|
826 |
+
"stopwords_min_cutoff": 0,
|
827 |
+
"cond_check_flagged_words": False,
|
828 |
+
"flagged_words_max_cutoff": 0.2,
|
829 |
+
"cond_check_lang_id": True,
|
830 |
+
"lang_id_min_cutoff": 0.75,
|
831 |
+
"cond_check_perplexity": False,
|
832 |
+
"perplexity_max_cutoff": 3000000,
|
833 |
+
}
|
834 |
+
|
835 |
+
parameters_filtering_zh = {
|
836 |
+
"cond_uniform_whitespace": True,
|
837 |
+
"cond_replace_unicode_punctuation": False,
|
838 |
+
"cond_remove_words_with_incorrect_substrings": False,
|
839 |
+
"incorrect_word_substrings": ["http", "www", ".com", "href", "//"],
|
840 |
+
"cond_remove_long_words": False,
|
841 |
+
"length_word_max_cutoff": 1000,
|
842 |
+
"cond_check_number_words": True,
|
843 |
+
"tokenization": True,
|
844 |
+
"strip_characters": special_characters_default,
|
845 |
+
"number_words_min_cutoff": 1,
|
846 |
+
"number_words_max_cutoff": 100000,
|
847 |
+
"cond_check_character_repetition_removal": True,
|
848 |
+
"character_repetition_length": 10,
|
849 |
+
"character_repetition_max_cutoff": 0.106,
|
850 |
+
"cond_check_word_repetition_removal": True,
|
851 |
+
"word_repetition_length": 5,
|
852 |
+
"word_repetition_max_cutoff": 0.19,
|
853 |
+
"cond_check_special_characters": True,
|
854 |
+
"special_characters": special_characters_default,
|
855 |
+
"special_characters_max_cutoff": 0.4,
|
856 |
+
"cond_words_augmentation": True,
|
857 |
+
"words_augmentation_group_sizes": [2],
|
858 |
+
"words_augmentation_join_char": "",
|
859 |
+
"cond_check_stopwords": False,
|
860 |
+
"stopwords_min_cutoff": 0,
|
861 |
+
"cond_check_flagged_words": False,
|
862 |
+
"flagged_words_max_cutoff": 0.2,
|
863 |
+
"cond_check_lang_id": True,
|
864 |
+
"lang_id_min_cutoff": 0.75,
|
865 |
+
"cond_check_perplexity": False,
|
866 |
+
"perplexity_max_cutoff": 3000000,
|
867 |
+
}
|
868 |
+
|
869 |
+
parameters_filtering = {
|
870 |
+
"default": parameters_filtering_default,
|
871 |
+
"af": parameters_filtering_af,
|
872 |
+
"ar": parameters_filtering_ar,
|
873 |
+
"arz": parameters_filtering_arz,
|
874 |
+
"as": parameters_filtering_as,
|
875 |
+
"bn": parameters_filtering_bn,
|
876 |
+
"ca": parameters_filtering_ca,
|
877 |
+
"en": parameters_filtering_en,
|
878 |
+
"es": parameters_filtering_es,
|
879 |
+
"eu": parameters_filtering_eu,
|
880 |
+
"fr": parameters_filtering_fr,
|
881 |
+
"gu": parameters_filtering_gu,
|
882 |
+
"hi": parameters_filtering_hi,
|
883 |
+
"id": parameters_filtering_id,
|
884 |
+
"kn": parameters_filtering_kn,
|
885 |
+
"ml": parameters_filtering_ml,
|
886 |
+
"mr": parameters_filtering_mr,
|
887 |
+
"pt": parameters_filtering_pt,
|
888 |
+
"sw": parameters_filtering_sw,
|
889 |
+
"ta": parameters_filtering_ta,
|
890 |
+
"te": parameters_filtering_te,
|
891 |
+
"ur": parameters_filtering_ur,
|
892 |
+
"vi": parameters_filtering_vi,
|
893 |
+
"yo": parameters_filtering_yo,
|
894 |
+
"zh": parameters_filtering_zh,
|
895 |
+
}
|
pt.arpa.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ad7241c4b11d902fa092506b731f61e5f67177897c2598b750d1a2e519be87ad
|
3 |
+
size 3220168756
|
pt.sp.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1707a7517b61ca9d4d333dabcc5ec7024e44c6466ff6faea9ccc95a0f1b2737c
|
3 |
+
size 958101
|
pt_examples_with_stats.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72a681cc82b2a0f9e11a8fa052143f7eaad5a67d31269bbd96653715e0ff776a
|
3 |
+
size 135498651
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fasttext
|
2 |
+
sentencepiece
|
3 |
+
https://github.com/kpu/kenlm/archive/master.zip
|
4 |
+
emoji
|
stopwords.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|