Spaces:
Running
Running
from PIL import Image | |
import numpy as np | |
from collections import Counter | |
def pixelate_image(image, pixel_size, interpolation): | |
""" | |
对图像进行像素化。 | |
参数: | |
- image: 输入的 PIL 图像对象 | |
- pixel_size: 像素块大小 | |
- interpolation: 插值方法 ("Nearest", "Bilinear", "Bicubic", "Lanczos") | |
返回: | |
- 像素化后的 PIL 图像对象 | |
""" | |
# 将输入图像转为 RGB 模式 | |
img = image.convert("RGB") | |
# 获取原图像的尺寸 | |
width, height = img.size | |
# 选择插值方式 | |
if interpolation == "Nearest": | |
resample_method = Image.NEAREST | |
elif interpolation == "Bilinear": | |
resample_method = Image.BILINEAR | |
elif interpolation == "Bicubic": | |
resample_method = Image.BICUBIC | |
elif interpolation == "Lanczos": | |
resample_method = Image.LANCZOS | |
else: | |
raise ValueError(f"未知的插值方法: {interpolation}") | |
# 第一步:缩小图像,使用邻近插值保持像素块的正方形效果 | |
small_img = img.resize( | |
(width // pixel_size, height // pixel_size), | |
resample=resample_method | |
) | |
# 第二步:放大图像,使用用户选择的插值方法 | |
pixelated_img = small_img.resize( | |
(width, height), | |
resample=resample_method | |
) | |
return pixelated_img | |
def mosaic_pixelation(image, pixel_size): | |
""" | |
使用马赛克方法对图像进行像素化。 | |
参数: | |
- image: 输入的 PIL 图像对象 | |
- pixel_size: 像素块大小 | |
返回: | |
- 马赛克效果的 PIL 图像对象 | |
""" | |
img = image.convert("RGB") | |
img_np = np.array(img) | |
h, w, _ = img_np.shape | |
for y in range(0, h, pixel_size): | |
for x in range(0, w, pixel_size): | |
block = img_np[y:y + pixel_size, x:x + pixel_size] | |
mean_color = block.mean(axis=(0, 1)).astype(int) | |
img_np[y:y + pixel_size, x:x + pixel_size] = mean_color | |
return Image.fromarray(img_np) | |
def oil_paint_pixelation(image, pixel_size): | |
""" | |
使用油画滤镜方法对图像进行像素化。 | |
参数: | |
- image: 输入的 PIL 图像对象 | |
- pixel_size: 像素块大小 | |
返回: | |
- 油画滤镜效果的 PIL 图像对象 | |
""" | |
img = image.convert("RGB") | |
img_np = np.array(img) | |
h, w, _ = img_np.shape | |
for y in range(0, h, pixel_size): | |
for x in range(0, w, pixel_size): | |
block = img_np[y:y + pixel_size, x:x + pixel_size] | |
block_colors = [tuple(color) for color in block.reshape(-1, 3)] | |
most_common_color = Counter(block_colors).most_common(1)[0][0] | |
img_np[y:y + pixel_size, x:x + pixel_size] = most_common_color | |
return Image.fromarray(img_np) | |
def hierarchical_pixelation(image, min_pixel_size, max_pixel_size): | |
""" | |
使用层次像素化方法对图像进行像素化。 | |
参数: | |
- image: 输入的 PIL 图像对象 | |
- min_pixel_size: 最小像素块大小 | |
- max_pixel_size: 最大像素块大小 | |
返回: | |
- 层次像素化效果的 PIL 图像对象 | |
""" | |
img = image.convert("RGB") | |
img_np = np.array(img) | |
h, w, _ = img_np.shape | |
step = max((max_pixel_size - min_pixel_size) // (w // min_pixel_size), 1) | |
for pixel_size in range(min_pixel_size, max_pixel_size + 1, step): | |
for y in range(0, h, pixel_size): | |
for x in range(0, w, pixel_size): | |
block = img_np[y:y + pixel_size, x:x + pixel_size] | |
mean_color = block.mean(axis=(0, 1)).astype(int) | |
img_np[y:y + pixel_size, x:x + pixel_size] = mean_color | |
return Image.fromarray(img_np) |