Spaces:
Running
Running
Huxxshadow
commited on
Update pixelation.py
Browse filesFix adaptive pixel size
- pixelation.py +36 -17
pixelation.py
CHANGED
@@ -16,7 +16,11 @@ def pixelate_image(image, pixel_size, interpolation="Nearest"):
|
|
16 |
"""
|
17 |
img = image.convert("RGB")
|
18 |
width, height = img.size
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
|
21 |
if interpolation == "Nearest":
|
22 |
resample_method = Image.NEAREST
|
@@ -29,8 +33,12 @@ def pixelate_image(image, pixel_size, interpolation="Nearest"):
|
|
29 |
else:
|
30 |
raise ValueError(f"未知的插值方法: {interpolation}")
|
31 |
|
|
|
|
|
|
|
|
|
32 |
small_img = img.resize(
|
33 |
-
(
|
34 |
resample=resample_method
|
35 |
)
|
36 |
|
@@ -55,13 +63,16 @@ def mosaic_pixelation(image, pixel_size):
|
|
55 |
img = image.convert("RGB")
|
56 |
img_np = np.array(img)
|
57 |
h, w, _ = img_np.shape
|
58 |
-
pixel_size = max(1, round(min(w, h) / 1024) * pixel_size)
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
63 |
mean_color = block.mean(axis=(0, 1)).astype(int)
|
64 |
-
img_np[y:y +
|
65 |
|
66 |
return Image.fromarray(img_np)
|
67 |
|
@@ -79,14 +90,17 @@ def oil_paint_pixelation(image, pixel_size):
|
|
79 |
img = image.convert("RGB")
|
80 |
img_np = np.array(img)
|
81 |
h, w, _ = img_np.shape
|
82 |
-
pixel_size = max(1, round(min(w, h) / 1024) * pixel_size)
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
87 |
block_colors = [tuple(color) for color in block.reshape(-1, 3)]
|
88 |
most_common_color = Counter(block_colors).most_common(1)[0][0]
|
89 |
-
img_np[y:y +
|
90 |
|
91 |
return Image.fromarray(img_np)
|
92 |
|
@@ -105,16 +119,21 @@ def hierarchical_pixelation(image, min_pixel_size, max_pixel_size):
|
|
105 |
img = image.convert("RGB")
|
106 |
img_np = np.array(img)
|
107 |
h, w, _ = img_np.shape
|
108 |
-
min_pixel_size = max(1, round(min(w, h) / 1024) * min_pixel_size)
|
109 |
-
max_pixel_size = max(1, round(min(w, h) / 1024) * max_pixel_size)
|
110 |
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
-
|
|
|
|
|
|
|
114 |
for y in range(0, h, pixel_size):
|
115 |
for x in range(0, w, pixel_size):
|
116 |
block = img_np[y:y + pixel_size, x:x + pixel_size]
|
117 |
mean_color = block.mean(axis=(0, 1)).astype(int)
|
118 |
img_np[y:y + pixel_size, x:x + pixel_size] = mean_color
|
119 |
|
120 |
-
return Image.fromarray(img_np)
|
|
|
|
16 |
"""
|
17 |
img = image.convert("RGB")
|
18 |
width, height = img.size
|
19 |
+
|
20 |
+
# 使用比例调整 pixel_size,但确保至少为 1
|
21 |
+
# 基准值 512 可根据需要调整
|
22 |
+
scale_factor = max(1, min(width, height) // 512)
|
23 |
+
adjusted_pixel_size = max(1, pixel_size * scale_factor)
|
24 |
|
25 |
if interpolation == "Nearest":
|
26 |
resample_method = Image.NEAREST
|
|
|
33 |
else:
|
34 |
raise ValueError(f"未知的插值方法: {interpolation}")
|
35 |
|
36 |
+
# 确保输出尺寸至少为1x1
|
37 |
+
small_width = max(1, width // adjusted_pixel_size)
|
38 |
+
small_height = max(1, height // adjusted_pixel_size)
|
39 |
+
|
40 |
small_img = img.resize(
|
41 |
+
(small_width, small_height),
|
42 |
resample=resample_method
|
43 |
)
|
44 |
|
|
|
63 |
img = image.convert("RGB")
|
64 |
img_np = np.array(img)
|
65 |
h, w, _ = img_np.shape
|
|
|
66 |
|
67 |
+
# 使用比例调整 pixel_size,但确保至少为 1
|
68 |
+
scale_factor = max(1, min(w, h) // 512) # 根据需要调整基准值
|
69 |
+
adjusted_pixel_size = max(1, pixel_size * scale_factor)
|
70 |
+
|
71 |
+
for y in range(0, h, adjusted_pixel_size):
|
72 |
+
for x in range(0, w, adjusted_pixel_size):
|
73 |
+
block = img_np[y:y + adjusted_pixel_size, x:x + adjusted_pixel_size]
|
74 |
mean_color = block.mean(axis=(0, 1)).astype(int)
|
75 |
+
img_np[y:y + adjusted_pixel_size, x:x + adjusted_pixel_size] = mean_color
|
76 |
|
77 |
return Image.fromarray(img_np)
|
78 |
|
|
|
90 |
img = image.convert("RGB")
|
91 |
img_np = np.array(img)
|
92 |
h, w, _ = img_np.shape
|
|
|
93 |
|
94 |
+
# 使用比例调整 pixel_size,但确保至少为 1
|
95 |
+
scale_factor = max(1, min(w, h) // 512) # 根据需要调整基准值
|
96 |
+
adjusted_pixel_size = max(1, pixel_size * scale_factor)
|
97 |
+
|
98 |
+
for y in range(0, h, adjusted_pixel_size):
|
99 |
+
for x in range(0, w, adjusted_pixel_size):
|
100 |
+
block = img_np[y:y + adjusted_pixel_size, x:x + adjusted_pixel_size]
|
101 |
block_colors = [tuple(color) for color in block.reshape(-1, 3)]
|
102 |
most_common_color = Counter(block_colors).most_common(1)[0][0]
|
103 |
+
img_np[y:y + adjusted_pixel_size, x:x + adjusted_pixel_size] = most_common_color
|
104 |
|
105 |
return Image.fromarray(img_np)
|
106 |
|
|
|
119 |
img = image.convert("RGB")
|
120 |
img_np = np.array(img)
|
121 |
h, w, _ = img_np.shape
|
|
|
|
|
122 |
|
123 |
+
# 使用比例调整 pixel_size,但确保至少为 1
|
124 |
+
scale_factor = max(1, min(w, h) // 512) # 根据需要调整基准值
|
125 |
+
adjusted_min_pixel_size = max(1, min_pixel_size * scale_factor)
|
126 |
+
adjusted_max_pixel_size = max(1, max_pixel_size * scale_factor)
|
127 |
|
128 |
+
# 防止步长为0
|
129 |
+
step = max((adjusted_max_pixel_size - adjusted_min_pixel_size) // max(w // adjusted_min_pixel_size, 1), 1)
|
130 |
+
|
131 |
+
for pixel_size in range(adjusted_min_pixel_size, adjusted_max_pixel_size + 1, step):
|
132 |
for y in range(0, h, pixel_size):
|
133 |
for x in range(0, w, pixel_size):
|
134 |
block = img_np[y:y + pixel_size, x:x + pixel_size]
|
135 |
mean_color = block.mean(axis=(0, 1)).astype(int)
|
136 |
img_np[y:y + pixel_size, x:x + pixel_size] = mean_color
|
137 |
|
138 |
+
return Image.fromarray(img_np)
|
139 |
+
|