Spaces:
Build error
Build error
File size: 16,558 Bytes
394811b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
#!/usr/bin/env python
# coding: utf-8
import torch
import model_handling
from data_handling import DataCollatorForNormSeq2Seq
from model_handling import EncoderDecoderSpokenNorm
import os
import random
import data_handling
from transformers.generation_logits_process import LogitsProcessorList
from transformers.generation_stopping_criteria import StoppingCriteriaList
from transformers.generation_beam_search import BeamSearchScorer
from dataclasses import dataclass
from transformers.file_utils import ModelOutput
import utils
# os.environ["CUDA_VISIBLE_DEVICES"] = "4"
use_gpu = False
if use_gpu:
if not torch.cuda.is_available():
use_gpu = False
tokenizer = model_handling.init_tokenizer()
model = EncoderDecoderSpokenNorm.from_pretrained('nguyenvulebinh/spoken-norm-taggen-v2').eval()
data_collator = DataCollatorForNormSeq2Seq(tokenizer)
if use_gpu:
model = model.cuda()
def make_batch_input(text_input_list):
batch_src_ids, batch_src_lengths = [], []
for text_input in text_input_list:
src_ids, src_lengths = [], []
for src in text_input.split():
src_tokenized = tokenizer(src)
ids = src_tokenized["input_ids"][1:-1]
src_ids.extend(ids)
src_lengths.append(len(ids))
src_ids = torch.tensor([0] + src_ids + [2])
src_lengths = torch.tensor([1] + src_lengths + [1]) + 1
batch_src_ids.append(src_ids)
batch_src_lengths.append(src_lengths)
assert sum(src_lengths - 1) == len(src_ids), "{} vs {}".format(sum(src_lengths), len(src_ids))
input_tokenized = tokenizer.pad({"input_ids": batch_src_ids}, padding=True)
input_word_length = tokenizer.pad({"input_ids": batch_src_lengths}, padding=True)["input_ids"] - 1
return input_tokenized['input_ids'], input_tokenized['attention_mask'], input_word_length
def make_batch_bias_list(bias_list):
if len(bias_list) > 0:
bias = data_collator.encode_list_string(bias_list)
bias_input_ids = bias['input_ids']
bias_attention_mask = bias['attention_mask']
else:
bias_input_ids = None
bias_attention_mask = None
return bias_input_ids, bias_attention_mask
def build_spoken_pronounce_mapping(bias_list):
list_pronounce = []
mapping = dict({})
for item in bias_list:
pronounces = item.split(' | ')[1:]
pronounces = [tokenizer(item)['input_ids'][1:-1] for item in pronounces]
list_pronounce.extend(pronounces)
subword_ids = list(set([item for sublist in list_pronounce for item in sublist]))
mapping = {item: [] for item in subword_ids}
for item in list_pronounce:
for wid in subword_ids:
if wid in item:
mapping[wid].append(item)
return mapping
def find_pivot(seq, subseq):
n = len(seq)
m = len(subseq)
result = []
for i in range(n - m + 1):
if seq[i] == subseq[0] and seq[i:i + m] == subseq:
result.append(i)
return result
def revise_spoken_tagging(list_tags, list_words, pronounce_mapping):
if len(pronounce_mapping) == 0:
return list_tags
result = []
for tags_tensor, sen in zip(list_tags, list_words):
tags = tags_tensor.detach().numpy().tolist()
sen = sen.detach().numpy().tolist()
candidate_pronounce = dict({})
for idx in range(len(tags)):
if tags[idx] != 0 and sen[idx] in pronounce_mapping:
for pronounce in pronounce_mapping[sen[idx]]:
pronounce_word = str(pronounce)
start_find_idx = max(0, idx - len(pronounce))
end_find_idx = idx + len(pronounce)
find_idx = find_pivot(sen[start_find_idx: end_find_idx], pronounce)
if len(find_idx) > 0:
find_idx = [item + start_find_idx for item in find_idx]
for map_idx in find_idx:
if candidate_pronounce.get(map_idx, None) is None:
candidate_pronounce[map_idx] = len(pronounce)
else:
candidate_pronounce[map_idx] = max(candidate_pronounce[map_idx], len(pronounce))
for idx, len_word in candidate_pronounce.items():
tags_tensor[idx] = 1
for i in range(1, len_word):
tags_tensor[idx + i] = 2
result.append(tags_tensor)
return result
def make_spoken_feature(input_features, text_input_list, pronounce_mapping=dict({})):
features = {
"input_ids": input_features[0],
"word_src_lengths": input_features[2],
"attention_mask": input_features[1],
# "bias_input_ids": bias_features[0],
# "bias_attention_mask": bias_features[1],
"bias_input_ids": None,
"bias_attention_mask": None,
}
if use_gpu:
for key in features.keys():
if features[key] is not None:
features[key] = features[key].cuda()
encoder_output = model.get_encoder()(**features)
spoken_tagging_output = torch.argmax(encoder_output[0].spoken_tagging_output, dim=-1)
spoken_tagging_output = revise_spoken_tagging(spoken_tagging_output, features['input_ids'], pronounce_mapping)
# print(spoken_tagging_output)
# print(features['input_ids'])
word_src_lengths = features['word_src_lengths']
encoder_features = encoder_output[0][0]
list_spoken_features = []
list_pre_norm = []
for tagging_sample, sample_word_length, text_input_features, sample_text in zip(spoken_tagging_output, word_src_lengths, encoder_features, text_input_list):
spoken_feature_idx = []
sample_words = ['<s>'] + sample_text.split() + ['</s>']
norm_words = []
spoken_phrase = []
spoken_features = []
if tagging_sample.sum() == 0:
list_pre_norm.append(sample_words)
continue
for idx, word_length in enumerate(sample_word_length):
if word_length > 0:
start = sample_word_length[:idx].sum()
end = start + word_length
if tagging_sample[start: end].sum() > 0 and sample_words[idx] not in ['<s>', '</s>']:
# Word has start tag
if (tagging_sample[start: end] == 1).sum():
if len(spoken_phrase) > 0:
norm_words.append('<mask>[{}]({})'.format(len(list_spoken_features), ' '.join(spoken_phrase)))
spoken_phrase = []
list_spoken_features.append(torch.cat(spoken_features))
spoken_features = []
spoken_phrase.append(sample_words[idx])
spoken_features.append(text_input_features[start: end])
else:
if len(spoken_phrase) > 0:
norm_words.append('<mask>[{}]({})'.format(len(list_spoken_features), ' '.join(spoken_phrase)))
spoken_phrase = []
list_spoken_features.append(torch.cat(spoken_features))
spoken_features = []
norm_words.append(sample_words[idx])
if len(spoken_phrase) > 0:
norm_words.append('<mask>[{}]({})'.format(len(list_spoken_features), ' '.join(spoken_phrase)))
spoken_phrase = []
list_spoken_features.append(torch.cat(spoken_features))
spoken_features = []
list_pre_norm.append(norm_words)
list_features_mask = []
if len(list_spoken_features) > 0:
feature_pad = torch.zeros_like(list_spoken_features[0][:1, :])
max_length = max([len(item) for item in list_spoken_features])
for i in range(len(list_spoken_features)):
spoken_length = len(list_spoken_features[i])
remain_length = max_length - spoken_length
device = list_spoken_features[i].device
list_spoken_features[i] = torch.cat([list_spoken_features[i],
feature_pad.expand(remain_length, feature_pad.size(-1))]).unsqueeze(0)
list_features_mask.append(torch.cat([torch.ones(spoken_length, device=device, dtype=torch.int64),
torch.zeros(remain_length, device=device, dtype=torch.int64)]).unsqueeze(0))
if len(list_spoken_features) > 0:
list_spoken_features = torch.cat(list_spoken_features)
list_features_mask = torch.cat(list_features_mask)
return list_spoken_features, list_features_mask, list_pre_norm
def make_bias_feature(bias_raw_features):
features = {
"bias_input_ids": bias_raw_features[0],
"bias_attention_mask": bias_raw_features[1]
}
if use_gpu:
for key in features.keys():
if features[key] is not None:
features[key] = features[key].cuda()
return model.forward_bias(**features)
def decode_plain_output(decoder_output):
plain_output = [item.split()[1:] for item in tokenizer.batch_decode(decoder_output['sequences'], skip_special_tokens=False)]
scores = torch.stack(list(decoder_output['scores'])).transpose(1, 0)
logit_output = torch.gather(scores, -1, decoder_output['sequences'][:, 1:].unsqueeze(-1)).squeeze(-1)
special_tokens = list(tokenizer.special_tokens_map.values())
generated_output = []
generated_scores = []
# filter special tokens
for out_text, out_score in zip(plain_output, logit_output):
temp_str, tmp_score = [], []
for piece, score in zip(out_text, out_score):
if piece not in special_tokens:
temp_str.append(piece)
tmp_score.append(score)
if len(temp_str) > 0:
generated_output.append(' '.join(temp_str).replace('▁', '|').replace(' ', '').replace('|', ' ').strip())
generated_scores.append((sum(tmp_score)/len(tmp_score)).cpu().detach().numpy().tolist())
else:
generated_output.append("")
generated_scores.append(0)
return generated_output, generated_scores
def generate_spoken_norm(list_spoken_features, list_features_mask, bias_features):
@dataclass
class EncoderOutputs(ModelOutput):
last_hidden_state: torch.FloatTensor = None
hidden_states: torch.FloatTensor = None
attentions: torch.FloatTensor = None
batch_size = list_spoken_features.size(0)
max_length = 50
device = list_spoken_features.device
decoder_input_ids = torch.zeros((batch_size, 1), device=device, dtype=torch.int64)
stopping_criteria = model._get_stopping_criteria(max_length=max_length, max_time=None,
stopping_criteria=StoppingCriteriaList())
model_kwargs = {
"encoder_outputs": EncoderOutputs(last_hidden_state=list_spoken_features),
"encoder_bias_outputs": bias_features,
"attention_mask": list_features_mask
}
decoder_output = model.greedy_search(
decoder_input_ids,
logits_processor=LogitsProcessorList(),
stopping_criteria=stopping_criteria,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
output_scores=True,
return_dict_in_generate=True,
**model_kwargs,
)
plain_output, plain_score = decode_plain_output(decoder_output)
# plain_output = tokenizer.batch_decode(decoder_output['sequences'], skip_special_tokens=True)
# # print(decoder_output)
# plain_output = [word.replace('▁', '|').replace(' ', '').replace('|', ' ').strip() for word in plain_output]
return plain_output, plain_score
def generate_beam_spoken_norm(list_spoken_features, list_features_mask, bias_features, num_beams=3):
@dataclass
class EncoderOutputs(ModelOutput):
last_hidden_state: torch.FloatTensor = None
batch_size = list_spoken_features.size(0)
max_length = 50
num_return_sequences = 1
device = list_spoken_features.device
decoder_input_ids = torch.zeros((batch_size, 1), device=device, dtype=torch.int64)
stopping_criteria = model._get_stopping_criteria(max_length=max_length, max_time=None,
stopping_criteria=StoppingCriteriaList())
model_kwargs = {
"encoder_outputs": EncoderOutputs(last_hidden_state=list_spoken_features),
"encoder_bias_outputs": bias_features,
"attention_mask": list_features_mask
}
beam_scorer = BeamSearchScorer(
batch_size=batch_size,
num_beams=num_beams,
device=device,
do_early_stopping=True,
num_beam_hyps_to_keep=num_return_sequences,
)
decoder_input_ids, model_kwargs = model._expand_inputs_for_generation(
decoder_input_ids, expand_size=num_beams, is_encoder_decoder=True, **model_kwargs
)
decoder_output = model.beam_search(
decoder_input_ids,
beam_scorer,
logits_processor=LogitsProcessorList(),
stopping_criteria=stopping_criteria,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
output_scores=None,
return_dict_in_generate=True,
**model_kwargs,
)
plain_output = tokenizer.batch_decode(decoder_output['sequences'], skip_special_tokens=True)
plain_output = [word.replace('▁', '|').replace(' ', '').replace('|', ' ').strip() for word in plain_output]
return plain_output, None
def reformat_normed_term(list_pre_norm, spoken_norm_output, spoken_norm_output_score=None, threshold=None, debug=False):
output = []
for pre_norm in list_pre_norm:
normed_words = []
# words = pre_norm.split()
for w in pre_norm:
if w.startswith('<mask>'):
term = w[7:].split('](')
# print(w)
# print(term)
term_idx = int(term[0])
norm_val = spoken_norm_output[term_idx]
norm_val_score = None if (spoken_norm_output_score is None or threshold is None) else spoken_norm_output_score[term_idx]
pre_norm_val = term[1][:-1]
if debug:
if norm_val_score is not None:
normed_words.append("({})({:.2f})[{}]".format(norm_val, norm_val_score, pre_norm_val))
else:
normed_words.append("({})[{}]".format(norm_val, pre_norm_val))
else:
if threshold is not None and norm_val_score is not None:
if norm_val_score > threshold:
normed_words.append(norm_val)
else:
normed_words.append(pre_norm_val)
else:
normed_words.append(norm_val)
else:
normed_words.append(w)
output.append(" ".join(normed_words))
return output
def infer(text_input_list, bias_list):
# extract bias feature
bias_raw_features = make_batch_bias_list(bias_list)
bias_features = make_bias_feature(bias_raw_features)
pronounce_mapping = build_spoken_pronounce_mapping(bias_list)
# Chunk split input and create feature
text_input_chunk_list = [utils.split_chunk_input(item, chunk_size=60, overlap=20) for item in text_input_list]
num_chunks = [len(i) for i in text_input_chunk_list]
flatten_list = [y for x in text_input_chunk_list for y in x]
input_raw_features = make_batch_input(flatten_list)
# Extract norm term and spoken feature
list_spoken_features, list_features_mask, list_pre_norm = make_spoken_feature(input_raw_features, flatten_list, pronounce_mapping)
# Merge overlap chunks
list_pre_norm_by_input = []
for idx, input_num in enumerate(num_chunks):
start = sum(num_chunks[:idx])
end = start + num_chunks[idx]
list_pre_norm_by_input.append(list_pre_norm[start:end])
text_input_list_pre_norm = [utils.merge_chunk_pre_norm(list_chunks, overlap=20, debug=False) for list_chunks in list_pre_norm_by_input]
if len(list_spoken_features) > 0:
spoken_norm_output, spoken_norm_score = generate_spoken_norm(list_spoken_features, list_features_mask, bias_features)
else:
spoken_norm_output, spoken_norm_score = [], None
return reformat_normed_term(text_input_list_pre_norm, spoken_norm_output, spoken_norm_score, threshold=15, debug=False)
|