File size: 16,558 Bytes
394811b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
#!/usr/bin/env python
# coding: utf-8
import torch
import model_handling
from data_handling import DataCollatorForNormSeq2Seq
from model_handling import EncoderDecoderSpokenNorm
import os
import random
import data_handling
from transformers.generation_logits_process import LogitsProcessorList
from transformers.generation_stopping_criteria import StoppingCriteriaList
from transformers.generation_beam_search import BeamSearchScorer
from dataclasses import dataclass
from transformers.file_utils import ModelOutput
import utils

# os.environ["CUDA_VISIBLE_DEVICES"] = "4"

use_gpu = False
if use_gpu:
    if not torch.cuda.is_available():
        use_gpu = False
tokenizer = model_handling.init_tokenizer()
model = EncoderDecoderSpokenNorm.from_pretrained('nguyenvulebinh/spoken-norm-taggen-v2').eval()
data_collator = DataCollatorForNormSeq2Seq(tokenizer)
if use_gpu:
    model = model.cuda()


def make_batch_input(text_input_list):
    batch_src_ids, batch_src_lengths = [], []
    for text_input in text_input_list:
        src_ids, src_lengths = [], []
        for src in text_input.split():
            src_tokenized = tokenizer(src)
            ids = src_tokenized["input_ids"][1:-1]
            src_ids.extend(ids)
            src_lengths.append(len(ids))
        src_ids = torch.tensor([0] + src_ids + [2])
        src_lengths = torch.tensor([1] + src_lengths + [1]) + 1
        batch_src_ids.append(src_ids)
        batch_src_lengths.append(src_lengths)
        assert sum(src_lengths - 1) == len(src_ids), "{} vs {}".format(sum(src_lengths), len(src_ids))
    input_tokenized = tokenizer.pad({"input_ids": batch_src_ids}, padding=True)
    input_word_length = tokenizer.pad({"input_ids": batch_src_lengths}, padding=True)["input_ids"] - 1
    return input_tokenized['input_ids'], input_tokenized['attention_mask'], input_word_length


def make_batch_bias_list(bias_list):
    if len(bias_list) > 0:
        bias = data_collator.encode_list_string(bias_list)
        bias_input_ids = bias['input_ids']
        bias_attention_mask = bias['attention_mask']
    else:
        bias_input_ids = None
        bias_attention_mask = None

    return bias_input_ids, bias_attention_mask


def build_spoken_pronounce_mapping(bias_list):
    list_pronounce = []
    mapping = dict({})
    for item in bias_list:
        pronounces = item.split(' | ')[1:]
        pronounces = [tokenizer(item)['input_ids'][1:-1] for item in pronounces]
        list_pronounce.extend(pronounces)    
    subword_ids = list(set([item for sublist in list_pronounce for item in sublist]))
    mapping = {item: [] for item in subword_ids}
    for item in list_pronounce:
        for wid in subword_ids:
            if wid in item:
                mapping[wid].append(item)
    return mapping

def find_pivot(seq, subseq):
    n = len(seq)
    m = len(subseq)
    result = []
    for i in range(n - m + 1):
        if seq[i] == subseq[0] and seq[i:i + m] == subseq:
            result.append(i)
    return result

def revise_spoken_tagging(list_tags, list_words, pronounce_mapping):
    if len(pronounce_mapping) == 0:
        return list_tags
    result = []
    for tags_tensor, sen in zip(list_tags, list_words):
        tags = tags_tensor.detach().numpy().tolist()
        sen = sen.detach().numpy().tolist()
        candidate_pronounce = dict({})
        for idx in range(len(tags)):
            if tags[idx] != 0 and sen[idx] in pronounce_mapping:
                for pronounce in pronounce_mapping[sen[idx]]:
                    pronounce_word = str(pronounce)
                    start_find_idx = max(0, idx - len(pronounce))
                    end_find_idx = idx + len(pronounce)
                    find_idx = find_pivot(sen[start_find_idx: end_find_idx], pronounce)
                    if len(find_idx) > 0:
                        find_idx = [item + start_find_idx for item in find_idx]
                        for map_idx in find_idx:
                            if candidate_pronounce.get(map_idx, None) is None:
                                candidate_pronounce[map_idx] = len(pronounce)
                            else:
                                candidate_pronounce[map_idx] = max(candidate_pronounce[map_idx], len(pronounce))
        for idx, len_word in candidate_pronounce.items():
            tags_tensor[idx] = 1
            for i in range(1, len_word):
                tags_tensor[idx + i] = 2
        result.append(tags_tensor)
    return result


def make_spoken_feature(input_features, text_input_list, pronounce_mapping=dict({})):
    features = {
        "input_ids": input_features[0],
        "word_src_lengths": input_features[2],
        "attention_mask": input_features[1],
        # "bias_input_ids": bias_features[0],
        # "bias_attention_mask": bias_features[1],
        "bias_input_ids": None,
        "bias_attention_mask": None,
    }
    if use_gpu:
        for key in features.keys():
            if features[key] is not None:
                features[key] = features[key].cuda()
        
    encoder_output = model.get_encoder()(**features)
    spoken_tagging_output = torch.argmax(encoder_output[0].spoken_tagging_output, dim=-1)
    spoken_tagging_output = revise_spoken_tagging(spoken_tagging_output, features['input_ids'], pronounce_mapping)
    
    # print(spoken_tagging_output)
    # print(features['input_ids'])
    word_src_lengths = features['word_src_lengths']
    encoder_features = encoder_output[0][0]
    list_spoken_features = []
    list_pre_norm = []
    for tagging_sample, sample_word_length, text_input_features, sample_text in zip(spoken_tagging_output, word_src_lengths, encoder_features, text_input_list):
        spoken_feature_idx = []
        sample_words = ['<s>'] + sample_text.split() + ['</s>']
        norm_words = []
        spoken_phrase = []
        spoken_features = []
        if tagging_sample.sum() == 0:
            list_pre_norm.append(sample_words)
            continue
        for idx, word_length in enumerate(sample_word_length):
            if word_length > 0:
                start = sample_word_length[:idx].sum()
                end = start + word_length
                if tagging_sample[start: end].sum() > 0 and sample_words[idx] not in ['<s>', '</s>']:
                    # Word has start tag
                    if (tagging_sample[start: end] == 1).sum():
                        if len(spoken_phrase) > 0:
                            norm_words.append('<mask>[{}]({})'.format(len(list_spoken_features), ' '.join(spoken_phrase)))
                            spoken_phrase = []
                            list_spoken_features.append(torch.cat(spoken_features))
                            spoken_features = []
                    spoken_phrase.append(sample_words[idx]) 
                    spoken_features.append(text_input_features[start: end])
                else:
                    if len(spoken_phrase) > 0:
                        norm_words.append('<mask>[{}]({})'.format(len(list_spoken_features), ' '.join(spoken_phrase)))
                        spoken_phrase = []
                        list_spoken_features.append(torch.cat(spoken_features))
                        spoken_features = []
                    norm_words.append(sample_words[idx])
        if len(spoken_phrase) > 0:
            norm_words.append('<mask>[{}]({})'.format(len(list_spoken_features), ' '.join(spoken_phrase)))
            spoken_phrase = []
            list_spoken_features.append(torch.cat(spoken_features))
            spoken_features = []
        list_pre_norm.append(norm_words)
        
        
    list_features_mask = []
    if len(list_spoken_features) > 0:
        feature_pad = torch.zeros_like(list_spoken_features[0][:1, :])
        max_length = max([len(item) for item in list_spoken_features])
        for i in range(len(list_spoken_features)):
            spoken_length = len(list_spoken_features[i])
            remain_length = max_length - spoken_length
            device = list_spoken_features[i].device
            list_spoken_features[i] = torch.cat([list_spoken_features[i], 
                                                 feature_pad.expand(remain_length, feature_pad.size(-1))]).unsqueeze(0)
            list_features_mask.append(torch.cat([torch.ones(spoken_length, device=device, dtype=torch.int64),
                                                 torch.zeros(remain_length, device=device, dtype=torch.int64)]).unsqueeze(0))
    if len(list_spoken_features) > 0:
        list_spoken_features = torch.cat(list_spoken_features)
        list_features_mask = torch.cat(list_features_mask)
    
    return list_spoken_features, list_features_mask, list_pre_norm


def make_bias_feature(bias_raw_features):
    features = {
        "bias_input_ids": bias_raw_features[0],
        "bias_attention_mask": bias_raw_features[1]
    }
    if use_gpu:
        for key in features.keys():
            if features[key] is not None:
                features[key] = features[key].cuda()
    return model.forward_bias(**features)


def decode_plain_output(decoder_output):
    plain_output = [item.split()[1:] for item in tokenizer.batch_decode(decoder_output['sequences'], skip_special_tokens=False)]
    scores = torch.stack(list(decoder_output['scores'])).transpose(1, 0)
    logit_output = torch.gather(scores, -1, decoder_output['sequences'][:, 1:].unsqueeze(-1)).squeeze(-1)
    special_tokens = list(tokenizer.special_tokens_map.values())
    generated_output = []
    generated_scores = []
    # filter special tokens
    for out_text, out_score in zip(plain_output, logit_output):
        temp_str, tmp_score = [], []
        for piece, score in zip(out_text, out_score):
            if piece not in special_tokens:
                temp_str.append(piece)
                tmp_score.append(score)
        if len(temp_str) > 0:
            generated_output.append(' '.join(temp_str).replace('▁', '|').replace(' ', '').replace('|', ' ').strip())
            generated_scores.append((sum(tmp_score)/len(tmp_score)).cpu().detach().numpy().tolist())
        else:
            generated_output.append("")
            generated_scores.append(0)
    return generated_output, generated_scores


def generate_spoken_norm(list_spoken_features, list_features_mask, bias_features):
    @dataclass
    class EncoderOutputs(ModelOutput):
        last_hidden_state: torch.FloatTensor = None
        hidden_states: torch.FloatTensor = None
        attentions: torch.FloatTensor = None

    batch_size = list_spoken_features.size(0)
    max_length = 50
    device = list_spoken_features.device
    decoder_input_ids = torch.zeros((batch_size, 1), device=device, dtype=torch.int64)
    stopping_criteria = model._get_stopping_criteria(max_length=max_length, max_time=None,
                                                     stopping_criteria=StoppingCriteriaList())
    model_kwargs = {
        "encoder_outputs": EncoderOutputs(last_hidden_state=list_spoken_features),
        "encoder_bias_outputs": bias_features,
        "attention_mask": list_features_mask
    }
    decoder_output = model.greedy_search(
        decoder_input_ids,
        logits_processor=LogitsProcessorList(),
        stopping_criteria=stopping_criteria,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        output_scores=True,
        return_dict_in_generate=True,
        **model_kwargs,
    )
    plain_output, plain_score = decode_plain_output(decoder_output)
    # plain_output = tokenizer.batch_decode(decoder_output['sequences'], skip_special_tokens=True)
    # # print(decoder_output)
    # plain_output = [word.replace('▁', '|').replace(' ', '').replace('|', ' ').strip() for word in plain_output]
    return plain_output, plain_score


def generate_beam_spoken_norm(list_spoken_features, list_features_mask, bias_features, num_beams=3):
    @dataclass
    class EncoderOutputs(ModelOutput):
        last_hidden_state: torch.FloatTensor = None

    batch_size = list_spoken_features.size(0)
    max_length = 50
    num_return_sequences = 1
    device = list_spoken_features.device
    decoder_input_ids = torch.zeros((batch_size, 1), device=device, dtype=torch.int64)
    stopping_criteria = model._get_stopping_criteria(max_length=max_length, max_time=None,
                                                     stopping_criteria=StoppingCriteriaList())
    model_kwargs = {
        "encoder_outputs": EncoderOutputs(last_hidden_state=list_spoken_features),
        "encoder_bias_outputs": bias_features,
        "attention_mask": list_features_mask
    }
    beam_scorer = BeamSearchScorer(
        batch_size=batch_size,
        num_beams=num_beams,
        device=device,
        do_early_stopping=True,
        num_beam_hyps_to_keep=num_return_sequences,
    )
    decoder_input_ids, model_kwargs = model._expand_inputs_for_generation(
        decoder_input_ids, expand_size=num_beams, is_encoder_decoder=True, **model_kwargs
    )

    decoder_output = model.beam_search(
        decoder_input_ids,
        beam_scorer,
        logits_processor=LogitsProcessorList(),
        stopping_criteria=stopping_criteria,
        pad_token_id=tokenizer.pad_token_id,
        eos_token_id=tokenizer.eos_token_id,
        output_scores=None,
        return_dict_in_generate=True,
        **model_kwargs,
    )

    plain_output = tokenizer.batch_decode(decoder_output['sequences'], skip_special_tokens=True)
    plain_output = [word.replace('▁', '|').replace(' ', '').replace('|', ' ').strip() for word in plain_output]
    return plain_output, None


def reformat_normed_term(list_pre_norm, spoken_norm_output, spoken_norm_output_score=None, threshold=None, debug=False):
    output = []
    for pre_norm in list_pre_norm:
        normed_words = []
        # words = pre_norm.split()
        for w in pre_norm:
            if w.startswith('<mask>'):
                term = w[7:].split('](')
                # print(w)
                # print(term)
                term_idx = int(term[0])
                norm_val = spoken_norm_output[term_idx]
                norm_val_score = None if (spoken_norm_output_score is None or threshold is None) else spoken_norm_output_score[term_idx]
                pre_norm_val = term[1][:-1]
                if debug:
                    if norm_val_score is not None:
                        normed_words.append("({})({:.2f})[{}]".format(norm_val, norm_val_score, pre_norm_val))
                    else:
                        normed_words.append("({})[{}]".format(norm_val, pre_norm_val))
                else:
                    if threshold is not None and norm_val_score is not None:
                        if norm_val_score > threshold:
                            normed_words.append(norm_val)
                        else:
                            normed_words.append(pre_norm_val)
                    else:
                        normed_words.append(norm_val)
            else:
                normed_words.append(w)
        output.append(" ".join(normed_words))
    return output


def infer(text_input_list, bias_list):
    # extract bias feature
    bias_raw_features = make_batch_bias_list(bias_list)
    bias_features = make_bias_feature(bias_raw_features)
    pronounce_mapping = build_spoken_pronounce_mapping(bias_list)

    # Chunk split input and create feature
    text_input_chunk_list = [utils.split_chunk_input(item, chunk_size=60, overlap=20) for item in text_input_list]
    num_chunks = [len(i) for i in text_input_chunk_list]
    flatten_list = [y for x in text_input_chunk_list for y in x]
    input_raw_features = make_batch_input(flatten_list)

    # Extract norm term and spoken feature
    list_spoken_features, list_features_mask, list_pre_norm = make_spoken_feature(input_raw_features, flatten_list, pronounce_mapping)

    # Merge overlap chunks
    list_pre_norm_by_input = []
    for idx, input_num in enumerate(num_chunks):
        start = sum(num_chunks[:idx])
        end = start + num_chunks[idx]
        list_pre_norm_by_input.append(list_pre_norm[start:end])
    text_input_list_pre_norm = [utils.merge_chunk_pre_norm(list_chunks, overlap=20, debug=False) for list_chunks in list_pre_norm_by_input]

    if len(list_spoken_features) > 0:
        spoken_norm_output, spoken_norm_score = generate_spoken_norm(list_spoken_features, list_features_mask, bias_features)
    else:
        spoken_norm_output, spoken_norm_score = [], None

    return reformat_normed_term(text_input_list_pre_norm, spoken_norm_output, spoken_norm_score, threshold=15, debug=False)