Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,11 @@ from fastapi import FastAPI, HTTPException
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
from rdflib import Graph
|
5 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Configurazione API Hugging Face
|
8 |
API_KEY = os.getenv("HF_API_KEY")
|
@@ -14,36 +19,39 @@ RDF_FILE = "Ontologia.rdf"
|
|
14 |
# Carica un riassunto del file RDF
|
15 |
def load_rdf_summary():
|
16 |
if os.path.exists(RDF_FILE):
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
|
|
|
|
|
|
|
|
32 |
return "Nessun dato RDF trovato."
|
33 |
|
34 |
rdf_context = load_rdf_summary()
|
35 |
-
|
36 |
|
37 |
# Valida le query SPARQL
|
38 |
def validate_sparql_query(query, rdf_file_path):
|
39 |
try:
|
40 |
g = Graph()
|
41 |
-
# Caricamento del file RDF dal percorso
|
42 |
g.parse(rdf_file_path, format="xml")
|
43 |
g.query(query) # Prova ad eseguire la query
|
44 |
return True
|
45 |
except Exception as e:
|
46 |
-
|
47 |
return False
|
48 |
|
49 |
# FastAPI app
|
@@ -70,8 +78,8 @@ Il tuo compito:
|
|
70 |
|
71 |
async def generate_response(message, max_tokens, temperature):
|
72 |
system_message = create_system_message(rdf_context)
|
73 |
-
|
74 |
-
|
75 |
|
76 |
messages = [
|
77 |
{"role": "system", "content": system_message},
|
@@ -85,20 +93,21 @@ async def generate_response(message, max_tokens, temperature):
|
|
85 |
temperature=temperature,
|
86 |
max_tokens=max_tokens,
|
87 |
top_p=0.7,
|
88 |
-
stream=False
|
|
|
89 |
)
|
90 |
-
|
91 |
return response['choices'][0]['message']['content'].replace("\n", " ").strip()
|
92 |
except Exception as e:
|
93 |
-
|
94 |
raise HTTPException(status_code=500, detail=f"Errore nell'elaborazione: {str(e)}")
|
95 |
|
96 |
# Endpoint per generare query SPARQL
|
97 |
@app.post("/generate-query/")
|
98 |
async def generate_query(request: QueryRequest):
|
99 |
response = await generate_response(request.message, request.max_tokens, request.temperature)
|
100 |
-
|
101 |
-
|
102 |
if not (response.startswith("SELECT") or response.startswith("ASK")):
|
103 |
return {
|
104 |
"query": None,
|
@@ -116,4 +125,4 @@ async def generate_query(request: QueryRequest):
|
|
116 |
# Endpoint di test
|
117 |
@app.get("/")
|
118 |
async def root():
|
119 |
-
return {"message": "Il server è attivo e pronto a generare query SPARQL!"}
|
|
|
3 |
from huggingface_hub import InferenceClient
|
4 |
from rdflib import Graph
|
5 |
from pydantic import BaseModel
|
6 |
+
import logging
|
7 |
+
|
8 |
+
# Configurazione logging
|
9 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
|
12 |
# Configurazione API Hugging Face
|
13 |
API_KEY = os.getenv("HF_API_KEY")
|
|
|
19 |
# Carica un riassunto del file RDF
|
20 |
def load_rdf_summary():
|
21 |
if os.path.exists(RDF_FILE):
|
22 |
+
try:
|
23 |
+
g = Graph()
|
24 |
+
g.parse(RDF_FILE, format="xml")
|
25 |
+
|
26 |
+
classes = set()
|
27 |
+
properties = set()
|
28 |
+
|
29 |
+
for s, _, o in g.triples((None, None, None)):
|
30 |
+
if "Class" in str(o) or "rdfs:Class" in str(o):
|
31 |
+
classes.add(s)
|
32 |
+
if "Property" in str(o):
|
33 |
+
properties.add(s)
|
34 |
+
|
35 |
+
classes_summary = "\n".join([f"- Classe: {cls}" for cls in classes])
|
36 |
+
properties_summary = "\n".join([f"- Proprietà: {prop}" for prop in properties])
|
37 |
+
return f"Classi:\n{classes_summary}\n\nProprietà:\n{properties_summary}"
|
38 |
+
except Exception as e:
|
39 |
+
logger.error(f"Errore durante il parsing del file RDF: {e}")
|
40 |
+
return "Errore nel caricamento del file RDF."
|
41 |
return "Nessun dato RDF trovato."
|
42 |
|
43 |
rdf_context = load_rdf_summary()
|
44 |
+
logger.info("RDF Summary: %s", rdf_context)
|
45 |
|
46 |
# Valida le query SPARQL
|
47 |
def validate_sparql_query(query, rdf_file_path):
|
48 |
try:
|
49 |
g = Graph()
|
|
|
50 |
g.parse(rdf_file_path, format="xml")
|
51 |
g.query(query) # Prova ad eseguire la query
|
52 |
return True
|
53 |
except Exception as e:
|
54 |
+
logger.error(f"Errore durante la validazione della query SPARQL: {e}")
|
55 |
return False
|
56 |
|
57 |
# FastAPI app
|
|
|
78 |
|
79 |
async def generate_response(message, max_tokens, temperature):
|
80 |
system_message = create_system_message(rdf_context)
|
81 |
+
logger.debug("System Message: %s", system_message)
|
82 |
+
logger.info("User Message: %s", message)
|
83 |
|
84 |
messages = [
|
85 |
{"role": "system", "content": system_message},
|
|
|
93 |
temperature=temperature,
|
94 |
max_tokens=max_tokens,
|
95 |
top_p=0.7,
|
96 |
+
stream=False,
|
97 |
+
timeout=60 # Aumenta il timeout
|
98 |
)
|
99 |
+
logger.info("Raw Response: %s", response)
|
100 |
return response['choices'][0]['message']['content'].replace("\n", " ").strip()
|
101 |
except Exception as e:
|
102 |
+
logger.error(f"Errore nell'elaborazione: {str(e)}")
|
103 |
raise HTTPException(status_code=500, detail=f"Errore nell'elaborazione: {str(e)}")
|
104 |
|
105 |
# Endpoint per generare query SPARQL
|
106 |
@app.post("/generate-query/")
|
107 |
async def generate_query(request: QueryRequest):
|
108 |
response = await generate_response(request.message, request.max_tokens, request.temperature)
|
109 |
+
logger.info("Risposta generata dal modello: %s", response)
|
110 |
+
|
111 |
if not (response.startswith("SELECT") or response.startswith("ASK")):
|
112 |
return {
|
113 |
"query": None,
|
|
|
125 |
# Endpoint di test
|
126 |
@app.get("/")
|
127 |
async def root():
|
128 |
+
return {"message": "Il server è attivo e pronto a generare query SPARQL!"}
|