Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer | |
from threading import Thread | |
import torch, transformers | |
import sys, os | |
sys.path.append( | |
os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir))) | |
from transformers import AutoModelForCausalLM,AutoTokenizer,LlamaTokenizer | |
print("Creat tokenizer...") | |
tokenizer = LlamaTokenizer.from_pretrained('IEITYuan/Yuan2-2B-Janus-hf', add_eos_token=False, add_bos_token=False, eos_token='<eod>') | |
tokenizer.add_tokens(['<sep>', '<pad>', '<mask>', '<predict>', '<FIM_SUFFIX>', '<FIM_PREFIX>', '<FIM_MIDDLE>','<commit_before>','<commit_msg>','<commit_after>','<jupyter_start>','<jupyter_text>','<jupyter_code>','<jupyter_output>','<empty_output>'], special_tokens=True) | |
print("Creat model...") | |
model = AutoModelForCausalLM.from_pretrained('IEITYuan/Yuan2-2B-Janus-hf', device_map='auto', torch_dtype=torch.bfloat16, trust_remote_code=True) | |
# using CUDA for an optimal experience | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
model = model.to(device) | |
# Defining a custom stopping criteria class for the model's text generation. | |
class StopOnTokens(StoppingCriteria): | |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: | |
stop_ids = [2] # IDs of tokens where the generation should stop. | |
for stop_id in stop_ids: | |
if input_ids[0][-1] == stop_id: # Checking if the last generated token is a stop token. | |
return True | |
return False | |
# Function to generate model predictions. | |
def predict(message, history): | |
# history_transformer_format = history + [[message, ""]] | |
# stop = StopOnTokens() | |
# | |
# # Formatting the input for the model. | |
# messages = "</s>".join(["</s>".join(["\n<|user|>:" + item[0], "\n<|assistant|>:" + item[1]]) | |
# for item in history_transformer_format]) | |
# model_inputs = tokenizer([messages], return_tensors="pt").to(device) | |
# streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) | |
# generate_kwargs = dict( | |
# model_inputs, | |
# streamer=streamer, | |
# max_new_tokens=1024, | |
# do_sample=True, | |
# top_p=0.95, | |
# top_k=50, | |
# temperature=0.7, | |
# num_beams=1, | |
# stopping_criteria=StoppingCriteriaList([stop]) | |
# ) | |
# t = Thread(target=model.generate, kwargs=generate_kwargs) | |
# t.start() # Starting the generation in a separate thread. | |
# partial_message = "" | |
# for new_token in streamer: | |
# partial_message += new_token | |
# if '</s>' in partial_message: # Breaking the loop if the stop token is generated. | |
# break | |
# yield partial_message | |
inputs = tokenizer(message, return_tensors="pt")["input_ids"].to(device) | |
outputs = model.generate(inputs, do_sample=False, max_length=500) | |
print(tokenizer.decode(outputs[0])) | |
return(tokenizer.decode(outputs[0])) | |
# Setting up the Gradio chat interface. | |
gr.ChatInterface(predict, | |
title="Yuan2_2b_chatBot", | |
description="่ฏทๆ้ฎ", | |
examples=['่ฏท้ฎ็ฎๅๆๅ ่ฟ็ๆบๅจๅญฆไน ็ฎๆณๆๅชไบ๏ผ','ไฝไธ้ฆๅ ณไบๆฐๅนดๅฟซไน็่ฏ','ๅไบฌ็ค้ธญๆไนๅ๏ผ'] | |
).launch() # Launching the web interface. | |