PerfectGPT / app.py
lruizap's picture
Actualizada la funci贸n del chatbot
613c19d
raw
history blame
1.81 kB
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from transformers import pipeline
import torch
import gradio as gr
# chatgpt-gpt4-prompts-bart-large-cnn-samsum
tokenizer = AutoTokenizer.from_pretrained(
"Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum")
model = AutoModelForSeq2SeqLM.from_pretrained(
"Kaludi/chatgpt-gpt4-prompts-bart-large-cnn-samsum", from_tf=True)
# zephyr
pipe = pipeline("text-generation", model="HuggingFaceH4/zephyr-7b-alpha",
torch_dtype=torch.bfloat16, device_map="auto")
def useZephyr(prompt):
messages = [
{
"role": "system",
"content": "you are a chatbot who always responds politely and in the shortest possible way",
},
{"role": "user", "content": prompt},
]
# https://huggingface.co/docs/transformers/main/en/chat_templating
prompt = pipe.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt)
return outputs[0]["generated_text"]
def generatePrompt(prompt):
batch = tokenizer(prompt, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"])
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
prompt = output[0]
result = useZephyr(prompt)
return result
#
# Interface
input_prompt = gr.Textbox(label="Prompt", value="photographer")
output_component = gr.Textbox(label="Output")
examples = [["photographer"], ["developer"], ["teacher"], [
"human resources staff"], ["recipe for ham croquettes"]]
description = ""
PerfectGPT = gr.Interface(generatePrompt, inputs=input_prompt, outputs=output_component,
examples=examples, title="馃椏 PerfectGPT v1 馃椏", description=description)
PerfectGPT.launch()